Сообщение администратору
Имя:
Email:
Ziņojums:
Вход на сайт
Lietotājs:
Parole:

Статистика
Поделиться
Ziedojums  •  Dienasgrāmata  •  Par projektu  •  Reklāma  •  Ievietojiet reklāmu  •  Sūtīt saturu  •  Laika skala  •  Translate  •  Рекомендованное  •  Написать администратору OpenToWork Viesi: 8    Dalibnieki: 1 Авторизация Sign In   Sign Up 
Scientific Poke Method
RULVEN
Meklēšana  
Blackball iMag | интернет-журнал
RSS-лента
Share link:

Sākums » Новости » Искусственный мозг против квантового компьютера: кто возьмет верх?

Искусственный мозг против квантового компьютера: кто возьмет верх?новости


Опубликовано: ноябрь 2024 г.
Added: Вс 10.11.2024 • Sergeant
Source: SecurityLab.ru
Skatījumi: 52
Komentāri: 0


Нейросети бросают вызов самым передовым вычислительным машинам.

Квантовые компьютеры долгое время считались грядущей революцией, способной полностью преобразить множество отраслей - от финансов до разработки лекарств. Особые надежды возлагались на их использование в физике и химии, где, как ожидалось, они получат огромные преимущества перед обычными вычислительными технологиями.

Однако пока отрасль борется с техническими сложностями создания работоспособных квантовых систем, другой игрок стремительно набирает обороты в решении некоторых ключевых задач в этих областях. Искусственный интеллект на базе нейронных сетей начинает активно применяться в фундаментальных исследованиях по физике, химии и материаловедению. Вернее, пока что только для моделирования и анализа данных.

Джузеппе Карло, профессор вычислительной физики из Швейцарского федерального технологического института, отмечает впечатляющий рост масштаба и сложности квантовых систем, которые можно моделировать с помощью ИИ. Недавно он в соавторстве опубликовал статью в журнале Science, демонстрирующую, что нейросетевые подходы постепенно становятся лидирующей техникой для моделирования материалов с ярко выраженными квантовыми свойствами.

Более того, компания Meta представила ИИ-модель, обученную на огромном наборе данных, которая заняла первое место в рейтинге нейросетей для поиска новых перспективных материалов. Учитывая темпы прогресса, многие исследователи задаются вопросом: сможет ли ИИ решить большую часть интересных задач еще до того, как станут реальностью мощные квантовые компьютеры?

По мнению Карло, компании, вкладывающие миллиарды в квантовые технологии, в конечном счете могут обнаружить, что их инвестиции были необоснованными.

Одно из главных преимуществ квантовых компьютеров - их способность выполнять определенные вычисления гораздо быстрее обычных машин. Но для реализации этого потенциала требуются квантовые процессоры на порядки более мощные, чем те, что существуют сегодня. Крупнейшие устройства пока лишь перешагнули отметку в тысячу кубитов, хотя чтобы обойти обычные системы, вероятно, потребуются десятки и даже миллионы кубитов.

В то же время для многих квантовых алгоритмов с очевидными коммерческими применениями (например поиск в базах данных или оптимизация) преимущество в скорости не столь велико. Более того, исследование с участием главы направления квантовых вычислений Microsoft показало, что теоретические плюсы вовсе исчезают, если учитывать, что квантовое "железо" работает на порядки медленнее современных чипов.

Тем не менее, есть области, где квантовые эффекты играют ключевую роль - также в химии и материаловедении. Свойства многих веществ, от белков до аккумуляторных материалов, определяются взаимодействием их составных частиц, прежде всего, электронов. Моделирование этих взаимодействий в компьютере могло бы помочь предсказывать характеристики молекул, что крайне важно для разработки новых лекарств или более эффективных аккумуляторов.

Однако парадоксальные законы квантовой механики, в частности феномен запутывания, при котором состояния удаленных частиц становятся неразрывно связаны, делают такие взаимодействия чрезвычайно сложными для предсказания. Точное отслеживание химических связей требует сложных расчетов, которые экспоненциально усложняются с ростом числа частиц. Вот почему моделирование крупных квантовых систем практически недостижимо для классических технологий.

Именно здесь квантовые компьютеры, в теории, должны получить преимущество. Работая по тем же квантовым принципам, они способны гораздо эффективнее представлять квантовые состояния. Их особые свойства используются и для ускорения операций.

Все квантовые системы отличаются по своей сложности, которая определяется степенью взаимодействия, или корреляции, между частицами.

В системах с сильными корреляциями отслеживание этих взаимосвязей быстро становится почти невозможной задачей. Но большинство практически важных для химии и материаловедения квантовых систем характеризуются слабыми корреляциями. Это упрощает их моделирование, как объясняет профессор Джузеппе Карло.

Значит, квантовые компьютеры вряд ли получат значительные преимущества в этих областях. Классические методы, например теория функционала плотности (DFT), уже способны точно имитировать слабо коррелированные квантовые системы. DFT позволяет понять ключевые свойства системы, зная лишь распределение ее электронов в пространстве - это значительно упрощает вычисления, но при этом дает точные результаты.

В последние годы произошел взрыв исследований, использующих DFT для накопления больших наборов данных о химических соединениях. Эти данные затем применяются для обучения нейронных сетей, которые учатся предсказывать свойства молекулярных структур. Такие ИИ-модели на порядки дешевле в использовании, чем традиционные DFT-расчеты. Поэтому таким путем гораздо проще расширить размер моделируемых систем - до 100 000 атомов.

Конечно, главным ограничением здесь остается доступность данных. Недавно представленный Meta набор данных по материалам, состоящий из 118 миллионов DFT-расчетов, позволил нейросетевой модели достичь рекордных результатов. Но создание столь масштабного обучающего набора потребовало колоссальных вычислительных ресурсов, недоступных большинству исследовательских групп. Реализация полного потенциала этого подхода, вероятно, потребует крупных инвестиций.



Мне нравится 0   Мне не нравится 0



Сейчас читают:
Участников (0) и гостей (0)




Komentāri: 0
There are no comments.

Новое
«Работа руководителя в полях», или что дает гемба-менеджмент компаниям вчера, 09:18
«Работа руководителя в полях», или что дает гемба-менеджмент компаниям
Microsoft дала ИИ настоящий инструмент программиста — и он впервые узнал, как сложно быть человеком 2 дня назад, 23:01
Microsoft дала ИИ настоящий инструмент программиста — и он впервые узнал, как сложно быть человеком
Google предложила сотням сотрудников уйти добровольно. Те отказались — их уволили Пт 11.04.2025
Google предложила сотням сотрудников уйти добровольно. Те отказались — их уволили
Как и с чем пьют настойки Пт 11.04.2025
Как и с чем пьют настойки
Лучшие телефоны Sony в 2025 году: выберите лучший Xperia для вас Ср 09.04.2025
Лучшие телефоны Sony в 2025 году: выберите лучший Xperia для вас
Даркнет в цифрах: как устроен скрытый интернет Вт 08.04.2025
Даркнет в цифрах: как устроен скрытый интернет
Возрожденная ALPINA 7 Series станет самым мощным бензиновым седаном BMW Вт 08.04.2025
Возрожденная ALPINA 7 Series станет самым мощным бензиновым седаном BMW
Почему программисты не стареют: эффект кодера после 40 Пн 07.04.2025
Почему программисты не стареют: эффект кодера после 40
Как Бурдж-Халифа стоит на песке и почему может упасть, если отключить там электричество Пн 07.04.2025
Как Бурдж-Халифа стоит на песке и почему может упасть, если отключить там электричество
Как работает QR-код: просто о сложном Вс 06.04.2025
Как работает QR-код: просто о сложном
Grāmatas
Web API Development with ASP.NET Core 8 Вт 25.03.2025
Web API Development with ASP.NET Core 8
Год: 2024
Azure Adventures with C# Вт 18.03.2025
Azure Adventures with C#
Год: 2024
Fundamentals of Enterprise Architecture Вт 11.03.2025
Fundamentals of Enterprise Architecture
Год: 2024
Pro .NET Memory Management, Second Edition Вт 04.03.2025
Pro .NET Memory Management, Second Edition
Год: 2024
Разработано на основе BlackNight CMS
Release v.2025-04-14
© 2000–2025 Blackball
Design & programming:
AboutReklāma
PULS.LV Professional rating system
Visitors
Web-site performed by Sergey Drozdov
BlackballReklāmaStatistikaПоддержка
MusicPlaylistsCinemaVideoGamesAudioDownloadsMagazinePicturesHumorForumWebsite journalSend contentРекомендованное
ЧасыLava LampWazeНастройка WindowsFleshlight
Complete your gift to make an impact
Buy Me A Coffee
Если вам понравился этот сайт и вы хотите меня поддержать, вы можете купить мне кофе. Спасибо!