Сообщение администратору
Имя:
Email:
Ziņojums:
Вход на сайт
Lietotājs:
Parole:

Ziedojums  •  Dienasgrāmata  •  Par projektu  •  Reklāma  •  Ievietojiet reklāmu  •  Sūtīt saturu  •  Laika skala  •  Translate  •  Рекомендованное  •  Написать администратору Viesi: 19    Dalibnieki: 0 Авторизация Sign In   Sign Up 
Scientific Poke Method
RULVEN
Meklēšana  
Blackball iMag | интернет-журнал
RSS-лента
Share link:
Katalogs


Sākums » [Dažādi] » Генри Сегерман и его математические этюды

Генри Сегерман и его математические этюды


Генри Сегерман и его математические этюды
Added: Ср 27.01.2021 • Sergeant
Author: Роман Фишман
Source: source
Skatījumi: 572
Komentāri: 0


Художник, который превращает абстрактные математические концепции в реальные и завораживающие физические объекты.

Генри Сегерман (Henry Segerman)Имя: Генри Сегерман
Год рождения: 1979
Образование: Стэнфордский университет
Город: Стилуотер, США
Кредо: «Возьмите всего одну идею, но покажите ее так ясно, как только возможно»

По легенде, Пифагор первым обнаружил, что две одинаково натянутые струны издают приятный звук, если их длины соотносятся как небольшие целые числа. С тех пор людей завораживает таинственная связь красоты и математики, вполне материальной гармонии форм, колебаний, симметрии — и совершенной абстракции чисел и отношений. Эта связь эфемерна, но ощутима, недаром художники уже много лет пользуются законами геометрии и вдохновляются математическими закономерностями. Генри Сегерману трудно было отказаться от этого источника идей: в конце концов, он математик и по призванию, и по профессии.

Фракталы

«Я родился в семье ученых, и думаю, что мой интерес ко всему, что требует развитого пространственного мышления, связан именно с этим», — говорит Генри.

Сегодня он — уже выпускник магистратуры Оксфордского и докторантуры Стэнфордского университетов, занимает должность младшего профессора в Университете Оклахомы. Но успешная научная карьера — лишь одна сторона его многогранной личности: еще более 12 лет назад математик начал устраивать художественные акции... в виртуальном мире Second Life. Этот трехмерный симулятор с элементами социальной сети тогда был весьма популярен, позволяя пользователям не только общаться друг с другом, но и обустраивать свои виртуальные «аватарки» и зоны для развлечений, работы и т. д.

Сегерман пришел сюда, вооружившись формулами и числами, и обустроил свой виртуальный мир на математический лад, наполнив его невиданными фрактальными фигурами, спиралями и даже тессерактами, четырехмерными гиперкубами. «Получилась такая проекция четырехмерного гиперкуба в трехмерной вселенной Second Life — которая сама по себе является проекцией трехмерного виртуального мира на двумерный, плоский экран», — замечает художник.


Тессеракт

Тессеракт — четырехмерный куб: подобно тому как квадрат можно получить смещением отрезка перпендикулярно ему на равное его длине расстояние, куб можно получить аналогичным копированием квадрата в трех измерениях, а сдвинув куб в четвертом, мы «нарисуем» тессеракт, или гиперкуб. У него будет 16 вершин и 24 грани, проекции которых на наше трехмерное пространство выглядят мало похожими на обычный трехмерный куб.

Однако работать с материальными скульптурами ему понравилось куда больше. «Вокруг нас постоянно циркулируют огромные объемы информации, — говорит Сегерман. — К счастью, реальный мир обладает очень большой пропускной способностью, которая в Сети пока недостижима. Дайте человеку готовую вещь, целостную форму — и он воспримет ее сразу во всей ее сложности, не дожидаясь загрузки». Так что начиная с 2009 года Сегерман создал чуть больше сотни скульптур, и каждая из них — наглядное и, насколько возможно, точное физическое воплощение абстрактных математических концепций и законов.


Бутылка Клейна

Бутылка Клейна. «Мысленно склеив края двух лент Мёбиуса, — говорит Генри Сегерман, — можно получить бутылку Клейна, которая также имеет одну поверхность. Здесь мы видим бутылку Клейна, полученную из лент Мёбиуса с круглым краем. Вернее, то, как она может выглядеть в трехмерном пространстве. Раз исходные „круглые“ ленты Мёбиуса уходят в бесконечность, то такая бутылка Клейна будет продолжаться в бесконечность дважды и сама себя пересечет, что видно на скульптуре». Увеличенная копия этой скульптуры украшает факультет математики и статистики Мельбурнского университета.

Многогранники

Эволюция художественных экспериментов Сегермана с 3D-печатью странным образом повторяет эволюцию математических идей. Среди его первых опытов — классические платоновы тела, набор из пяти симметричных фигур, сложенных правильными треугольниками, пятиугольниками и квадратами. За ними последовали полуправильные многогранники — 13 архимедовых тел, грани которых образованы неодинаковыми правильными многоугольниками.


Платоновы тела

Платоновы тела: сложенные правильными треугольниками тетраэдр, октаэдр и икосаэдр, а также состоящий из квадратов куб и додекаэдр на основе пятиугольников. Сам Платон связывал их с четырьмя стихиями: «гладкие» октаэдрические частицы, по его представлениям, складывали воздух, «текучие» икосаэдры — воду, «плотные» кубы — землю, а острые и «колючие» тетраэдры — огонь. Пятый элемент, додекаэдр, философ считал частицей мира идей.

Уже эти простейшие формы, перекочевав с двумерных иллюстраций и идеального мира воображения в трехмерную реальность, вызывают внутреннее восхищение их лаконичной и совершенной красотой. «Связь математической красоты с красотой визуальных или звуковых произведений искусства мне кажется очень зыбкой. В конце концов, много людей остро чувствуют одну форму этой красоты, совершенно не понимая другой. Математические идеи можно транслировать в зримые или звучащие формы, но не все, и далеко не так легко, как может показаться», — добавляет Сегерман.


Стэнфордский кролик

Стэнфордский кролик — созданная в 1994 году трехмерная модель. Сложенная из почти 70 000 треугольников, она служит простым и популярным тестом эффективности программных алгоритмов. Например, на кролике можно проверить эффективность сжатия данных или сглаживания поверхности для компьютерной графики. Поэтому для специалистов эта форма — все равно что фраза «Съешь еще этих мягких французских булок» для любителя поиграться с компьютерными шрифтами. Скульптура «Стэнфордский кролик» — это та же модель, поверхность которой «замощена» буквами слова «кролик» (bunny).

Вскоре за классическими фигурами последовали все более и более сложные формы, вплоть до таких, о которых вряд ли могли помыслить Архимед или Пифагор, — правильных многогранников, без промежутка заполняющих гиперболическое пространство Лобачевского. Такие фигуры с невероятными названиями вроде «тетраэдральные соты порядка 6» или «шестиугольные мозаичные соты» невозможно представить в воображении, не имея под рукой наглядной картинки. Или — одной из скульптур Сегермана, которые представляют их в привычном нам трехмерном евклидовом пространстве.


Ячейки правильных сот {3, 3, 6} и {6 ,3, 3}

Ячейки правильных сот {3, 3, 6} (тетраэдральные, порядка 6) и {6 ,3, 3} (шестиугольные мозаичные) способны без промежутков и пустот заполнить гиперболическое трехмерное пространство Лобачевского, но в нашем евклидовом мире выглядят довольно неправильно.

Работа художника начинается с 3D-модели, которую он выстраивает в профессиональном пакете Rhinoceros. По большому счету, этим она и заканчивается: само производство скульптур, распечатку модели на 3D-принтере, Генри просто заказывает через Shapeways, большое онлайн-сообщество энтузиастов трехмерной печати, и получает готовый объект из пластика или металломатричного композита на основе стали и бронзы. «Это очень легко, — говорит он. — Просто загружаешь модель на сайт, нажимаешь кнопку „Добавить в корзину“, оформляешь заказ — и через пару недель тебе доставляют его почтой».

Красота

В конечном итоге эволюция математических скульптур Сегермана заводит нас в сложную и завораживающую область топологии. Этот раздел математики изучает свойства и деформации плоских поверхностей и пространств разной размерности, и для него важны их более широкие характеристики, чем для классической геометрии. Куб здесь можно легко, как пластилин, превратить в шар, а чашку с ручкой скатать в бублик, не нарушив в них ничего важного — известный пример, который нашел воплощение в изящной «Топологической шутке» Сегермана.


Топологическая шутка (бублик и кружка)

Топологическая шутка: с определенной точки зрения поверхности кружки и бублика «одинаковы», точнее говоря — гомеоморфны, поскольку способны переходить одна в другую без разрывов и склеек, за счет постепенной деформации.

«В математике очень важно эстетическое чувство, математики любят „красивые“ теоремы, — рассуждает художник. — Трудно определить, в чем именно состоит эта красота, как, впрочем, и в других случаях. Но я бы сказал, что красота теоремы — в простоте, которая позволяет что-то понять, увидеть какие-то простые связи, прежде казавшиеся невероятно сложными. В основе математической красоты может лежать чистый, эффективный минимализм — и удивленный возглас: „Ага!“».


Дополнение восьмерки

Дополнение восьмерки. Представьте, что вы завязали узел внутри твердого тела, а потом удалили его; оставшаяся полость называется дополнением узла. На этой модели показано дополнение одного из самых простых узлов, восьмерки.

Глубокая красота математики может пугать, как ледяная вечность дворца Снежной королевы. Однако вся эта холодная гармония неизменно отражает внутреннюю упорядоченность и закономерность той Вселенной, в которой мы живем. Математика — лишь язык, который безошибочно соответствует этому изящному и сложному миру. Парадоксально, но в нем находятся физические соответствия и приложения для почти любого высказывания на языке математических формул и отношений. Даже самым абстрактным и «искусственным» построениям рано или поздно находится приложение в реальном мире.


Кривая Гильберта

Кривая Гильберта: непрерывная линия заполняет пространство куба, ни разу не прерываясь и не пересекаясь сама с собой. Кривые Гильберта представляют собой фрактальные структуры, и если увеличить масштаб, можно увидеть, что части этой кривой повторяют форму целого. «Я тысячи раз видел их на иллюстрациях и компьютерных моделях, но, когда впервые взял такую 3D-скульптуру в руки, сразу заметил, что она еще и пружинит, — говорит Сегерман. — Физические воплощения математических концепций всегда чем-нибудь да удивляют».

Евклидова геометрия стала отражением классического стационарного мира, дифференциальное исчисление пригодилось ньютоновской физике. Невероятная риманова метрика, как оказалось, необходима для описания нестабильной Вселенной Эйнштейна, а многомерные гиперболические пространства нашли применение в теории струн.

В этом странном соответствии абстрактных выкладок и чисел основаниям нашей реальности, возможно, и кроется секрет той красоты, которую мы обязательно чувствуем за всеми холодными расчетами математиков.



Мне нравится 0   Мне не нравится 0



Comments

Чтобы добавить видео с YouTube, нужно написать [@youtube=xxxxx] , где xxxxx – ID видео.


Комментарии: 0
Нет ни одного комментария.

Новое
Зал короля Артура оказался неолитическим загоном для скота 3 дня назад, 09:05
Зал короля Артура оказался неолитическим загоном для скота
15 действительно вкусных салатов с крабовыми палочками Сб 16.11.2024
15 действительно вкусных салатов с крабовыми палочками
Почему W-образные моторы уходят в прошлое, если они были лучше V-образных Ср 13.11.2024
Почему W-образные моторы уходят в прошлое, если они были лучше V-образных
Когда устал от алгоритмов: Ревью кода на собеседовании Вт 12.11.2024
Когда устал от алгоритмов: Ревью кода на собеседовании
Вирусы на Android: подробное руководство по обеспечению безопасности Пн 11.11.2024
Вирусы на Android: подробное руководство по обеспечению безопасности
Пн 11.11.2024
10 не самых очевидных причин, чтобы уволиться
Искусственный мозг против квантового компьютера: кто возьмет верх? Вс 10.11.2024
Искусственный мозг против квантового компьютера: кто возьмет верх?
10 лучших салатов с кукурузой Сб 09.11.2024
10 лучших салатов с кукурузой
10 вкусных салатов с фасолью, которые хочется готовить снова и снова Сб 02.11.2024
10 вкусных салатов с фасолью, которые хочется готовить снова и снова
Пишем одностраничное приложение с помощью htmx Вт 29.10.2024
Пишем одностраничное приложение с помощью htmx
Grāmatas
Blazor in Action Вт 04.06.2024
Blazor in Action
Год: 2022
Security for Containers and Kubernetes Вт 28.05.2024
Security for Containers and Kubernetes
Год: 2023
Designing Data-Intensive Applications Вт 14.05.2024
Designing Data-Intensive Applications
Год: 2017
Fundamentals of Software Architecture Вт 07.05.2024
Fundamentals of Software Architecture
Год: 2020
Разработано на основе BlackNight CMS
Release v.2024-11-16
© 2000–2024 Blackball
Design & programming:
AboutReklāma
Visitors
Web-site performed by Sergey Drozdov
BlackballReklāmaStatistikaПоддержка
MusicPlaylistsCinemaVideoGamesAudioDownloadsMagazinePicturesHumorForumWebsite journalSend contentРекомендованное