Message to administrator
Имя:
Email:
Message:
Sign In
Username:
Password:

Donation  •  Journal  •  About  •  Advertisement  •  Place ads banner  •  Send content  •  Timeline  •  Translate  •  Featured  •  Message to admin Guests: 6    Members: 0 Авторизация Sign In   Sign Up 
Scientific Poke Method
RULVEN
Search  
Blackball iMag | интернет-журнал
RSS-лента
Share link:
Catalogue


Home » Новости » Искусственный мозг против квантового компьютера: кто возьмет верх?

Искусственный мозг против квантового компьютера: кто возьмет верх?новости


Искусственный мозг против квантового компьютера: кто возьмет верх?
Опубликовано: ноябрь 2024 г.
Added: 3 days ago, 17:15Sergeant
Source: SecurityLab.ru
Views: 3
Comments: 0


Нейросети бросают вызов самым передовым вычислительным машинам.

Квантовые компьютеры долгое время считались грядущей революцией, способной полностью преобразить множество отраслей - от финансов до разработки лекарств. Особые надежды возлагались на их использование в физике и химии, где, как ожидалось, они получат огромные преимущества перед обычными вычислительными технологиями.

Однако пока отрасль борется с техническими сложностями создания работоспособных квантовых систем, другой игрок стремительно набирает обороты в решении некоторых ключевых задач в этих областях. Искусственный интеллект на базе нейронных сетей начинает активно применяться в фундаментальных исследованиях по физике, химии и материаловедению. Вернее, пока что только для моделирования и анализа данных.

Джузеппе Карло, профессор вычислительной физики из Швейцарского федерального технологического института, отмечает впечатляющий рост масштаба и сложности квантовых систем, которые можно моделировать с помощью ИИ. Недавно он в соавторстве опубликовал статью в журнале Science, демонстрирующую, что нейросетевые подходы постепенно становятся лидирующей техникой для моделирования материалов с ярко выраженными квантовыми свойствами.

Более того, компания Meta представила ИИ-модель, обученную на огромном наборе данных, которая заняла первое место в рейтинге нейросетей для поиска новых перспективных материалов. Учитывая темпы прогресса, многие исследователи задаются вопросом: сможет ли ИИ решить большую часть интересных задач еще до того, как станут реальностью мощные квантовые компьютеры?

По мнению Карло, компании, вкладывающие миллиарды в квантовые технологии, в конечном счете могут обнаружить, что их инвестиции были необоснованными.

Одно из главных преимуществ квантовых компьютеров - их способность выполнять определенные вычисления гораздо быстрее обычных машин. Но для реализации этого потенциала требуются квантовые процессоры на порядки более мощные, чем те, что существуют сегодня. Крупнейшие устройства пока лишь перешагнули отметку в тысячу кубитов, хотя чтобы обойти обычные системы, вероятно, потребуются десятки и даже миллионы кубитов.

В то же время для многих квантовых алгоритмов с очевидными коммерческими применениями (например поиск в базах данных или оптимизация) преимущество в скорости не столь велико. Более того, исследование с участием главы направления квантовых вычислений Microsoft показало, что теоретические плюсы вовсе исчезают, если учитывать, что квантовое "железо" работает на порядки медленнее современных чипов.

Тем не менее, есть области, где квантовые эффекты играют ключевую роль - также в химии и материаловедении. Свойства многих веществ, от белков до аккумуляторных материалов, определяются взаимодействием их составных частиц, прежде всего, электронов. Моделирование этих взаимодействий в компьютере могло бы помочь предсказывать характеристики молекул, что крайне важно для разработки новых лекарств или более эффективных аккумуляторов.

Однако парадоксальные законы квантовой механики, в частности феномен запутывания, при котором состояния удаленных частиц становятся неразрывно связаны, делают такие взаимодействия чрезвычайно сложными для предсказания. Точное отслеживание химических связей требует сложных расчетов, которые экспоненциально усложняются с ростом числа частиц. Вот почему моделирование крупных квантовых систем практически недостижимо для классических технологий.

Именно здесь квантовые компьютеры, в теории, должны получить преимущество. Работая по тем же квантовым принципам, они способны гораздо эффективнее представлять квантовые состояния. Их особые свойства используются и для ускорения операций.

Все квантовые системы отличаются по своей сложности, которая определяется степенью взаимодействия, или корреляции, между частицами.

В системах с сильными корреляциями отслеживание этих взаимосвязей быстро становится почти невозможной задачей. Но большинство практически важных для химии и материаловедения квантовых систем характеризуются слабыми корреляциями. Это упрощает их моделирование, как объясняет профессор Джузеппе Карло.

Значит, квантовые компьютеры вряд ли получат значительные преимущества в этих областях. Классические методы, например теория функционала плотности (DFT), уже способны точно имитировать слабо коррелированные квантовые системы. DFT позволяет понять ключевые свойства системы, зная лишь распределение ее электронов в пространстве - это значительно упрощает вычисления, но при этом дает точные результаты.

В последние годы произошел взрыв исследований, использующих DFT для накопления больших наборов данных о химических соединениях. Эти данные затем применяются для обучения нейронных сетей, которые учатся предсказывать свойства молекулярных структур. Такие ИИ-модели на порядки дешевле в использовании, чем традиционные DFT-расчеты. Поэтому таким путем гораздо проще расширить размер моделируемых систем - до 100 000 атомов.

Конечно, главным ограничением здесь остается доступность данных. Недавно представленный Meta набор данных по материалам, состоящий из 118 миллионов DFT-расчетов, позволил нейросетевой модели достичь рекордных результатов. Но создание столь масштабного обучающего набора потребовало колоссальных вычислительных ресурсов, недоступных большинству исследовательских групп. Реализация полного потенциала этого подхода, вероятно, потребует крупных инвестиций.



Мне нравится 0   Мне не нравится 0



Comments

Чтобы добавить видео с YouTube, нужно написать [@youtube=xxxxx] , где xxxxx – ID видео.


Комментарии: 0
Нет ни одного комментария.

Новое
Когда устал от алгоритмов: Ревью кода на собеседовании вчера, 09:04
Когда устал от алгоритмов: Ревью кода на собеседовании
Вирусы на Android: подробное руководство по обеспечению безопасности 2 дня назад, 10:15
Вирусы на Android: подробное руководство по обеспечению безопасности
2 дня назад, 09:08
10 не самых очевидных причин, чтобы уволиться
Искусственный мозг против квантового компьютера: кто возьмет верх? 3 дня назад, 17:15
Искусственный мозг против квантового компьютера: кто возьмет верх?
Зал короля Артура оказался неолитическим загоном для скота Сб 09.11.2024
Зал короля Артура оказался неолитическим загоном для скота
10 лучших салатов с кукурузой Сб 09.11.2024
10 лучших салатов с кукурузой
10 вкусных салатов с фасолью, которые хочется готовить снова и снова Сб 02.11.2024
10 вкусных салатов с фасолью, которые хочется готовить снова и снова
Пишем одностраничное приложение с помощью htmx Вт 29.10.2024
Пишем одностраничное приложение с помощью htmx
10 аппетитных салатов с консервированным тунцом Сб 26.10.2024
10 аппетитных салатов с консервированным тунцом
Двухфакторная аутентификация: что это и зачем она нужна Чт 24.10.2024
Двухфакторная аутентификация: что это и зачем она нужна
Books
Blazor in Action Вт 04.06.2024
Blazor in Action
Год: 2022
Security for Containers and Kubernetes Вт 28.05.2024
Security for Containers and Kubernetes
Год: 2023
Designing Data-Intensive Applications Вт 14.05.2024
Designing Data-Intensive Applications
Год: 2017
Fundamentals of Software Architecture Вт 07.05.2024
Fundamentals of Software Architecture
Год: 2020
Разработано на основе BlackNight CMS
Release v.2024-11-13
© 2000–2024 Blackball
Design & programming:
AboutAdvertising
Visitors
Web-site performed by Sergey Drozdov
BlackballAdvertisingStatsПоддержка
MusicPlaylistsCinemaVideoGamesAudioDownloadsMagazinePicturesHumorForumWebsite journalSend contentFeatured