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A BRIEF HISTORY OF THE CLASSIFICATION OF THE FINITE
SIMPLE GROUPS

RONALD SOLOMON

Abstract. We present some highlights of the 110-year project to classify the
finite simple groups.

1. The beginnings

“Es wäre von dem grössten Interesse, wenn eine Uebersicht der sämmtlichen ein-
fachen Gruppen von einer endlichen Zahl von Operationen gegeben werden könnte.”
[“It would be of the greatest interest if it were possible to give an overview of the
entire collection of finite simple groups.”] So begins an article by Otto Hölder in
Mathematische Annalen in 1892 [Ho]. Insofar as it is possible to give the birthyear
of the program to classify the finite simple groups, this would be it. The first paper
classifying an infinite family of finite simple groups, starting from a hypothesis on
the structure of certain proper subgroups, was published by Burnside in 1899 [Bu2].
As the final paper (the classification of quasithin simple groups of even characteris-
tic by Aschbacher and S. D. Smith) in the first proof of the Classification Theorem
for the Finite Simple Groups (henceforth to be called simply the Classification) will
probably be published in the year 2001 or 2002, the classification endeavor comes
very close to spanning precisely the 20th century.

Of course there were some important pre-natal events. Galois introduced the
concept of a normal subgroup in 1832, and Camille Jordan in the preface to his
Traité des substitutions et des équations algebriques in 1870 [J1] flagged Galois’
distinction between groupes simples and groupes composées as the most important
dichotomy in the theory of permutation groups. Moreover, in the Traité, Jordan
began to build a database of finite simple groups – the alternating groups of degree
at least 5 and most of the classical projective linear groups over fields of prime
cardinality. Finally, in 1872, Ludwig Sylow published his famous theorems on
subgroups of prime power order [Sy].

Nevertheless Hölder’s paper is a landmark. Hölder threw down a gauntlet which
was rapidly taken up by Frank Cole, who in 1892 [Co1] determined all simple groups
of orders up to 500 (except for some uncertainties related to 360 and 432) and in
1893 [Co2] extended this up to 660, discovering in the process a new simple group
SL(2, 8). By the dawn of the 20th century Miller and Ling (1900) [ML] had pushed
this frontier out to 2001. These results were achieved with the only available tools
– Sylow’s Theorems and the Pigeonhole Principle. Needless to say, the arsenal of
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weapons needed to be enlarged and the strategy of proceeding one integer at a time
needed to be abandoned if any serious progress was to be made.

An alternate strategy was already implicit in a lemma of Hölder (1892) [Ho]
proving that a simple group whose order is a product of at most three prime numbers
must be cyclic of prime order. The idea that the structure of a finite group G
depends more on the shape of the prime factorization of |G| than on the actual
nature of the prime factors was explicitly stated by Cole and Glover (1893) [CG]
in their critique of Cayley and Kempe: “It is however a defect of their method of
classification that it proceeds simply according to the order and not the type of
the groups. Thus the groups of order pq where p and q are prime numbers are
all of one of two types, the orders 10, 14, 15, . . . presenting no greater complexity
than the order 6.” This vein was explored further by Burnside and Frobenius, who
both established by 1895 that the only nonabelian simple groups whose order is
a product of at most five prime factors are PSL(2, p) for p ∈ {5, 7, 11, 13}. As
remarked by Peter Neumann, it is an open question analogous to the Twin Primes
Conjecture whether there are infinitely many primes p for which |PSL(2, p)| is a
product of exactly six prime factors. Thus again this strategy rapidly encounters
difficult and irrelevant obstacles. Its last hurrah was Burnside’s proof in 1900 [Bu3]
that if G is a nonabelian simple group of odd order, then |G| must be a product of
at least seven prime numbers.

In a similar but more fruitful direction, Frobenius [Fr1] proved in 1893 that a
simple group of squarefree order must be cyclic of prime order. Burnside extended
this in 1895 [Bu1] to the following suggestive result:

Theorem. If p is the smallest prime divisor of |G| and if G has a cyclic Sylow
p-subgroup P , then G = KP , where K is a normal subgroup of order prime to p.
In particular if G is simple, then |G| = p.

This points to the importance of the smallest prime divisor p of |G| and to the
significance of the structure of a Sylow p-subgroup, not simply its cardinality.

Thus by 1895 the strategies were becoming more subtle, but the techniques had
not advanced beyond Sylow and virtuoso counting arguments. All of this began
to change on April 6, 1896, when Dedekind wrote his famous letter to Frobenius
inviting him to consider the problem of factoring the group determinant of a finite
nonabelian group. This problem, which vastly generalizes the problem of factoring
the determinant of circulant matrices, is roughly equivalent to the decomposition
of the regular representation of a finite group into its irreducible constituents, or
the complex group algebra as a sum of simple two-sided ideals. The solution by
Frobenius later that year signalled the birth of the theory of group characters,
which he rapidly developed to the point where he could give a recursive algorithm
for the computation of the group characters of the symmetric groups Sn for all
n. Nevertheless it was not immediately clear whether this new theory of group
characters was of any use for the structure theory of finite groups.

This question was resolved in the affirmative by Burnside in 1900 [Bu3] when he
used the new theory to prove that a transitive permutation group of prime degree
p either must be 2-transitive or must have a normal Sylow p-subgroup of order p.
Since a 2-transitive group G of degree p must have |G| divisible by p(p−1), G must
in particular either be of even order or be solvable. Using this, Burnside was able
to show that if G is a nonabelian simple group of odd order, then |G| > 40000, |G|
must have at least seven prime factors, and G can have no proper subgroup of index
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less than 101. This prompted his famous observation in 1911 [Bu5]: “The contrast
that these results shew between groups of odd and even order suggests inevitably
that [nonabelian] simple groups of odd order do not exist.”

The less-than-friendly rivalry between Frobenius and Burnside produced two
further spectacular applications of group characters. Both represented the culmi-
nation of a sequence of partial results by both researchers. First came Frobenius’
Theorem. We call a permutation group G on a set X regular if, for any two points
x, y ∈ X , there exists a unique g ∈ G with g(x) = y. Every group acts regularly
on itself via the regular representation. Thus regular action puts no restriction on
the structure of G. On the other hand Frobenius [Fr2] proved the following result.

Frobenius’ Theorem. Let G be a permutation group which acts transitively but
not regularly on a finite set X. Suppose that no nonidentity permutation in G fixes
more than one point. Then G = KGx, where K is a regular normal subgroup of G
and Gx is the stabilizer of the point x. In particular G is not a simple group.

There is an equivalent theorem in the context of abstract groups. If H is a
subgroup of G, we let Hg = g−1Hg.

Theorem. Let G be a finite group with a proper subgroup H such that H ∩Hg = 1
for all g ∈ G − H. Then G has a proper normal subgroup K such that G = KH
and K ∩H = 1.

Groups G satisfying the hypotheses of either version of Frobenius’ Theorem
are called Frobenius groups, and the subgroups H and K are called a Frobenius
complement (unique only up to G-conjugacy) and the Frobenius kernel respectively.
In the proof Frobenius used his Reciprocity Theorem. As clarified later by Brauer
and Suzuki, the key is the decomposition of certain virtual characters induced from
H to G, yielding characters of G which restrict irreducibly to H . Then K may be
recognized as the kernel of a suitable character of G.

The final triumph of this era of the Classification was Burnside’s proof in 1904
[Bu4] of the paqb Theorem, using the arithmetic of group characters.

Burnside’s paqb Theorem. Let G be a finite group such that |G| = paqb for some
primes p and q. Then G is a solvable group.

Burnside had great hopes for further applications of character theory to the
study of finite groups, in particular to the proof of the nonexistence of nonabelian
simple groups of odd order. This would have to wait half a century. But before
moving on, it is worthwhile to mention the early developments in the American
school.

A vigorous school of mathematics was nurtured at the University of Chicago in
the 1890’s by E.H. Moore, and finite group theory was one of its major interests.
Moore proved that any complex linear representation of a finite group is a unitary
representation, and using this Maschke proved that every complex linear represen-
tation is completely reducible. Moore’s student, L.E. Dickson, extended Jordan’s
database of simple groups to include all the classical projective groups over finite
fields in his book Linear Groups (1900) [D1]. Dickson was well aware of the analogy
between his work and the recent monumental results of Killing and Cartan classi-
fying the simple continuous groups of Lie, and shortly thereafter (1901,1903) [D2],
[D3] he succeeded in constructing analogues of the Lie group G2 over finite fields
F and establishing their simplicity when |F | > 2. He also studied finite analogues
of E6 but did not prove their simplicity.
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2. Theory building

Dickson declared finite group theory to be dead in the 1920’s. Indeed there was
something of a hiatus from World War I to the 1930’s. Nevertheless there were
soon important new developments. First came the work of Philip Hall, Burnside’s
intellectual heir. Hall acknowledged this genealogy in 1942 at the time of his election
to the Royal Society (quoted in [Ro]):

“The aim of my researches has been to a very considerable extent that of extend-
ing and completing in certain directions the work of Burnside. I asked Burnside’s
advice on topics in group theory which would be worth investigation and received a
postcard in reply containing valuable suggestions as to worthwhile problems. This
was in 1927 and shortly afterwards Burnside died. I never met him, but he has
been the greatest influence on my ways of thinking.”

Hall undertook in 1932 [H2] “the first stages of an attempt to construct a sys-
tematic general theory of groups of prime-power order,” justifying this project with
the sentence: “It is widely recognised, I believe, that the astonishing multiplicity
and variety of these groups is one of the main difficulties which beset the advance
of finite-group-theory.” Indeed one feature of the later history of the Classification
is an assiduous and largely successful effort to avoid having to study any p-groups
beyond those masterfully analyzed by Philip Hall.

Even more important for the future theory of simple groups was the series of
papers Hall published in 1928 [H1] and 1937 [H3], [H4] on finite solvable groups.
In the first he establishes generalizations of Sylow’s Theorems for finite solvable
groups; namely if G is a finite solvable group of order mn with m and n coprime,
then G possesses a subgroup H of order m, any two such subgroups are conjugate
and any subgroup of order dividing m is contained in a conjugate of H . Such a
subgroup H is now called a Hall subgroup or Hall π-subgroup where π is the set
of prime divisors of m. More striking were Hall’s results of 1937 showing that the
existence of Hall π-subgroups is a characteristic property of finite solvable groups.
Thus, although a nonsolvable group G may have Hall π-subgroups for certain sets
of primes, e.g. {2, 3} for A5 and PSL(2, 7), the following theorem holds.

P. Hall’s Theorem. G is a finite solvable group if and only if, for each expression
|G| = mn with m prime to n, G contains at least one subgroup of order m and at
least one subgroup of order n.

This theorem extends Burnside’s paqb Theorem in a very suggestive fashion, re-
lating the existence of nontrivial normal subgroups in a group G to the factorization
of G as a product of permutable subgroups G = MN = NM (of coprime orders).
The connection between solvability and factorizations was explored further in the
1950’s by Wielandt, Hall, Kegel and others. Finally this line of thought culmi-
nated in the factorization theorems of Thompson, which are among the key ideas
of the classification proof. Hall’s elegant and elementary proof relies on Burnside’s
theorem as the base case. Coming full circle, Thompson’s factorization theorems
and related ideas of Bender would finally lead in 1973 to a character-free proof of
Burnside’s Theorem by Goldschmidt [Go1] and Matsuyama [Ma].

In Germany the 1920’s witnessed intense activity on the structure theory of many
algebraic objects – fields, division algebras, rings with ACC or DCC, etc. Interest
in finite groups led to important papers in the late 1930’s by Fitting, Wielandt and
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Zassenhaus in particular. The climate of thought is so well captured by Zassen-
haus in the preface to his 1937 book Lehrbuch der Gruppentheorie (translated into
English and published by Chelsea in 1949 [Z3]) that I quote it at length:

“Investigations published within the last fifteen years have greatly deepened our
knowledge of groups and have given wide scope to group-theoretic methods. As
a result, what were isolated and separate insights before, now begin to fit into a
unified, if not yet final, pattern....

“It was a course of E. Artin, given in Hamburg during the Winter Semester
of 1933 and the Spring Semester of 1934, which started me on an intensive study
of group theory. In this course, the problems of the theory of finite groups were
transformed into problems of general mathematical interest. While any question
concerning a single object (e.g., finite group) may be answered in a finite number of
steps, it is the goal of research to divide the infinity of objects under investigation
into classes of types with similar structure.

“The idea of O. Hölder for solving this problem was later made a general principle
of investigation in algebra by E. Nöther. We are referring to the consistent appli-
cation of the concept of homomorphic mapping. With such mappings one views
the objects, so to speak, through the wrong end of a telescope. These mappings,
applied to finite groups, give rise to the concepts of normal subgroups and of factor
groups. Repeated application of the process of diminution yields the composition
series, whose factor groups are the finite simple groups. These are, accordingly, the
bricks of which every finite group is built. How to build is indicated – in principle
at least – by Schreier’s extension theory. The Jordan-Hölder-Schreier theorem tells
us that the type and the number of bricks is independent of the diminution process.
The determination of all finite simple groups is still the main unsolved problem.”
(“Als ungelöstes Hauptproblem verbleibt die Bestimmung aller endlichen einfachen
Gruppen.”)

In contrast to earlier texts by Burnside [Bu5], Miller, Blichfeldt and Dickson
[MBD] (1916) and Speiser [Sp] (1927), Zassenhaus’ work almost completely omits
the theories of permutation groups and of group characters, focussing singlemind-
edly on the architectural structure of groups in terms of normal subgroups and
factor groups. In addition to his improved treatment of the Jordan-Hölder-Schreier
Theorem, the principal additions are an exposition and amplification of the theory
of group extensions developed by Schur and Schreier. Most notable in this context
is the following theorem.

Schur-Zassenhaus Theorem. Let G be a finite group with a normal subgroup N
such that |N | and |G/N | are coprime. Then the extension G splits over N ; i.e.
there is a subgroup H of G with G = NH and N ∩H = 1. Moreover if either N
or G/N is a solvable group, then all complements to N in G are G-conjugate.

Zassenhaus notes that the conjugacy of complements had been conjectured to
hold without any restriction of solvability and observes that the problem had been
reduced by Witt to the case where N is simple and CG(N) = 1; i.e. G is a subgroup
of Aut(N). He then observes that the desired general theorem would follow from
the proof of either of the following conjectures:

Odd Order Conjecture (Miller, Burnside). Every finite group of odd order is
solvable.
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Schreier Conjecture. If N is a nonabelian finite simple group, then Aut(N)/N
is a solvable group.

Both conjectures turned out to be true, but very deep. Indeed the only known
proof of the Schreier Conjecture is as a corollary of the Classification Theorem.
The proof of the Odd Order Conjecture by Feit and Thompson [FT] finally yielded
the unrestricted Schur-Zassenhaus Theorem, for which there is still no known ele-
mentary proof.

In the same architectural spirit was the paper “Beiträge zur Theorie der endlichen
Gruppen” by Fitting [F], edited and published posthumously by Zassenhaus in 1938.
In this paper Fitting took a somewhat different approach to the group extension
problem and most notably focussed attention on what came to be called the Fit-
ting subgroup F (G) of a finite group, G, namely the join of all normal nilpotent
subgroups of G. He showed that F (G) is itself nilpotent, hence the unique largest
normal nilpotent subgroup of G. Moreover for solvable groups G he singled out the
following fundamental property.

Fitting’s Theorem. Let G be a finite solvable group. Then CG(F (G)) ≤ F (G).

Since F (G) is a normal (indeed, characteristic) subgroup of G, the conjugation
action of G on the elements of F (G) defines a homomorphism of G into Aut(F (G))
whose kernel is CG(F (G)). Thus an equivalent formulation of Fitting’s Theorem is
the following result.

Theorem. Let G be a finite solvable group. Then G/Z(F (G)) is isomorphic to a
subgroup of Aut(F (G)).

The corresponding assertion is emphatically false for general finite groups. In-
deed if G is a nonabelian simple group, then F (G) = 1. The search for a good
substitute for F (G) when G is non-solvable would occupy the attention of Goren-
stein, Walter and Bender in the late 1960’s, but even before this, Fitting’s Theorem
would play an important role in the thinking of Philip Hall in the 1950’s.

There were numerous other notable developments in the 1930’s. Grün [Gu] and
Wielandt [Wi] refined and extended Burnside’s transfer homomorphism. Given a
Sylow p-subgroup P of a finite group G, the idea of the transfer is to use the nat-
ural surjection P → P/[P, P ] to define a homomorphism VG→P/[P,P ] which under
suitable hypotheses may be shown to be nontrivial. The goal is to detect a normal
subgroup N of G such that the quotient group G/N is an abelian p-group. For
example if G is a finite group of order n with a cyclic Sylow 2-subgroup gener-
ated by the element t, then the regular representation of G represents t as an odd
permutation on n letters. In other words the kernel N of the induced homomor-
phism G → Sn/An is a normal subgroup of G with G/N cyclic of order 2. This
argument was known to Frobenius and Burnside, and Burnside realized that it
could be extended to produce cyclic quotients of order greater than 2 by replacing
permutation representations by monomial representations, i.e. by considering ho-
momorphism G → GL(m,C)/SL(m,C). This was refined around the 1930’s into
the modern definition of the transfer homomorphism, which served as a tool in
abelian class field theory as well as finite group theory.

This is a good moment to digress slightly to explain the concept of local group
theory which began to emerge at this point. As defined later by Alperin, a local
(or p-local) subgroup of a finite group G is the normalizer in G of a nonidentity p-
subgroup of G for some prime p. If G is a nonabelian simple group, then every local
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subgroupN is a proper subgroup of G. Indeed the local subgroups afford the largest
proper subgroups of G whose existence can be predicted a priori from knowledge
of |G| alone. If |G| = pag0 with (p, g0) = 1, then Sylow’s theorems guarantee
the existence of subgroups of order pb for 1 ≤ b ≤ a and the normalizers of these
subgroups are the local subgroups of G. The main challenge confronted in the
Classification Project was: Can we use the “global” hypothesis of the simplicity of
G to limit (severely) the possibilities for the p-local data of G, i.e. the isomorphism
types and embeddings of the p-local subgroups of G? Or contrapositively, can we
show that most sets of hypothetical p-local data for G are incompatible with the
simplicity of G? If this were not possible, then any inductive classification enterprise
would have necessarily foundered on the shoals of the unthinkably large number of
possible sets of p-local data.

For example, in the context of the transfer homomorphism, wishful thinking
might suggest the following claim: If G has no nontrivial abelian p-quotient, then
some p-local subgroup N of G has no nontrivial abelian p-quotient. Unfortunately
this statement is false, as is easily seen by inspection of the alternating group A6,
which has no nontrivial 2-quotient. On the other hand every 2-local subgroup is
isomorphic either to a dihedral group of order 8 or to the symmetric group S4,
both of which have nontrivial 2-quotients. On the bright side, however, Burnside
proved that the claim is true when G has an abelian Sylow p-subgroup P , taking
N = NG(P ), the normalizer in G of P . Wielandt [Wi] extended this considerably
(for odd p) to the case when P is a regular p-group in the sense of Philip Hall. In
particular this covers the cases when P has exponent p and when P has nilpotence
class less than p (i.e. the p-fold commutator [x1, x2, . . . , xp] = 1 for all xi ∈ P ).

This is about as far as you can go while focussing on NG(P ). The search for
suitable alternative p-local subgroups led Grün and Wielandt to the concept of a
weakly closed subgroup, which would later loom large in the thinking of Thompson.

Definition. Let H be a subgroup of the group G. A subgroup W of H is weakly
closed in H (with respect to G) if W g ≤ H implies W g = W for all g ∈ G; i.e. W
is the unique member of its G-conjugacy class which is contained in H .

Grün [Gu] proved that if the center Z(P ) is a weakly closed subgroup of P ,
then G has an abelian p-quotient if and only if NG(Z(P )) does. This turned out
to be extendible, in a spirit similar to Wielandt’s extension of Burnside’s theorem,
to what might be dubbed regularly embedded weakly closed subgroups of P . The
best result in this vein was achieved in the 1970’s by Yoshida [Y].

The most general theorem, again of later vintage, is Alperin’s Fusion Theorem
(1967) [Al], which implies that the existence of abelian p-quotients is always de-
termined p-locally, i.e. by examination of the full set of p-local data for G. Indeed
it provides much sharper information. Also in the late 1960’s, Glauberman [Gl3]
defined nontrivial subgroups K∞(P ) and K∞(P ) such that the normalizer of either
of them detects nontrivial p-quotients of G whenever p ≥ 5. Ironically, however, by
this point the role of the transfer homomorphism in the Classification was rapidly
waning. Moreover, as attention focussed, after the Odd Order Theorem, on the 2-
local structure of G, what little interest transfer held focussed mostly on the prime
2, and here the most effective tool proved to be the Thompson Transfer Lemma,
which is merely an elementary refinement of the old permutation group argument
of Frobenius and Burnside.
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Yet another major development in the 1930’s was Zassenhaus’ extension of the
work of Jordan and Frobenius on transitive permutation groups. Jordan had clas-
sified all sharply k-transitive permutation groups for k = 2 and for k ≥ 4 [J2].
Sharply 2-transitive permutation groups of a finite set Ω satisfy the hypotheses of
Frobenius’ Theorem and thus have the structure G = KGα where K is a regular
normal subgroup of G. As K − {1} is permutation-isomorphic to Ω − {α} as Gα-
set, K must be an elementary abelian p-group for some prime p with |Ω| = pn,
n ≥ 1. Burnside attempted a description of the structure of Gα, but the first cor-
rect treatment was given by Zassenhaus in 1936 [Z2]. At the same time, Zassenhaus
classified all finite sharply 3-transitive permutation groups G [Z1]. In such a group
G, the point stabilizer Gα is a sharply 2-transitive group. Zassenhaus initiated the
investigation of the larger class of finite 2-transitive permutation groups in which
a point stabilizer is a Frobenius group. Such groups came to be known as Zassen-
haus groups, and their classification in the late 1950’s and early 1960’s was a major
project involving the work of Thompson, Feit, Ito, G. Higman and Suzuki. The
most dramatic moment was Suzuki’s discovery [Su3] of a new infinite family of finite
nonabelian simple Zassenhaus groups, all of order prime to 3. These groups came
to be known as the Suzuki groups, Sz(22n+1), n ≥ 1. Suzuki’s work culminated
in 1963 with the following theorem [Su4], [Su5] which extends his classification of
Zassenhaus groups of odd degree.

Suzuki’s Theorem. Let G be a finite simple 2-transitive permutation group on a
set Ω with |Ω| odd. Suppose that for α, β ∈ Ω, |Gαβ | is odd and Gαβ has a normal
complement Q in Gα such that Q is regular on Ω − {α}. Then G ∼= PSL(2, 2n),
Sz(22n+1) or PSU(3, 2n).

Probably the deepest group-theoretic work in the 1930’s was the investigation
of the modular representations of finite groups, primarily by Richard Brauer, who
had left Germany in 1933 and settled in Toronto in 1935 after a year as Weyl’s
assistant at the IAS. In Brauer’s modular theory, the local/global principle reaches
a higher level of refinement, as Brauer moves back and forth both between the
characteristic 0 and the characteristic p representations of a group G and also
between the representations of G and the representations of the p-local subgroups of
G. His early work culminated in his paper on the p-modular representations of finite
groups G such that |G| is divisible by p but not by p2, presented to the A.M.S. in
1939 [Br1]. As reported by Feit [Fe], one of Brauer’s “motives in studying modular
representations was the hope of characterizing certain classical groups over finite
fields.” Indeed in [Br1] he notes applications such as the uniqueness of simple
groups of order 5616 and 6048. The fundamental principles of his analysis later
evolved into his general Main Theorems. The calculation of so-called decomposition
matrices, which underlie the detailed results he achieved for Sylow groups of prime
order, soon founders however on the rocks of wild representation type. Nevertheless
Brauer was later able to push through the analysis for certain Sylow 2-subgroups of
2-rank 2, which proved to be just what was needed to obtain group order formulas
for simple groups with dihedral, semidihedral and “wreathed” Sylow 2-subgroups.
Alas in general his theory was of much less applicability to the Classification than
he had hoped.
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3. The Classification begins in earnest

After the trauma of World War II, the simple group problem recaptured the
attention of leading algebraists. “Das interessanteste Problem scheint mir die Auf-
suchung aller endlichen einfachen Gruppen zu sein.” [“The most interesting prob-
lem seems to me to be the classification of all finite simple groups.”] So spoke
Zassenhaus in his Antrittsvorlesung at the University of Hamburg in 1947 (quoted
in [Be5]). The interest in the problem was clear. The best strategy for its solution
was not at all clear. Inspired by the work of Killing and E. Cartan, Zassenhaus
hoped to linearize the problem by identifying all simple groups as groups of auto-
morphisms of some linear structure, perhaps a finite Lie algebra. This approach
gained credibility when Chevalley [Ch] found a uniform method to construct fi-
nite analogues of the simple complex Lie groups. Supplemented with variations by
Steinberg [St] and Ree [Re1], [Re2], this furnished a Lie-theoretic context for all
of the known finite simple groups except for the alternating groups and the five
Mathieu groups. However, although this yielded a rich harvest of new finite simple
groups and a unified context for the study of their subgroups and representations,
it did not immediately suggest a strategy for their classification. Indeed, no one has
yet found an a priori method of associating to a finite simple group G an algebra
of the “correct” dimension, roughly log(|G|).

Meanwhile around 1950 several mathematicians independently began parallel
investigations which were to prove more immediately fruitful for the classification
endeavor. The groups PSL(2, q) are the most elementary of the nonabelian simple
groups, and their subgroups have been well-understood since the time of E.H. Moore
and Dickson. When q is a power of 2, the centralizer of every nonidentity element
is abelian and the group is partitioned as a union of abelian (Sylow 2-)subgroups of
order q and cyclic (Hall) subgroups of order q−1 and q+1, any two intersecting only
in the identity. When q ≡ ε (mod 4) (with ε = ±1), the centralizer of every element
of order greater than 2 is abelian and the group is partitioned as a union of abelian
(Sylow p-)subgroups of order q and cyclic subgroups of order q − ε and q+ε

2 , again
any two intersecting only in the identity. On the other hand, if G is a finite group
in which the centralizer of every non-identity element is abelian, then it is not hard
to see that the commuting graph of nonidentity elements of G is a union of disjoint
cliques, corresponding to a partition of G as a union of maximal abelian subgroups.
Furthermore the normalizer of any such maximal abelian subgroup A is a Frobenius
group with Frobenius kernel A. When a group G has such a subgroup structure,
the situation is especially favorable for the analysis of induced virtual characters
(first studied by Brauer) in the spirit of Frobenius’ Theorem. This seems to have
been recognized independently around 1950 by Brauer, Suzuki and G.E. Wall, who
began parallel investigations.

In 1948 Brauer accepted a chair at the University of Michigan and shortly there-
after, together with his student K.A. Fowler, began the investigation of CA-groups
of even order, i.e. groups of even order in which the centralizer of every nonidentity
element is abelian. Around the same time, Wall in Manchester began similar re-
search at the suggestion of Graham Higman. (There were some antecedents in the
work of Szekeres (1949)[Sz] and Redei (1950)[Rd].) Meanwhile Suzuki in Japan dis-
covered a characterization of PGL(2, q), q odd, in terms of partitions [Su1], which
attracted the attention of Baer, who invited Suzuki to join him at the University
of Illinois in 1951. The following summer Suzuki participated in Brauer’s summer
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seminar in Michigan, which was also attended by graduate students including Wal-
ter Feit and John H. Walter. By 1953, Brauer, Suzuki and Wall had each arrived
at characterization theorems for PSL(2, q) beginning from local data, one version
of which would be published several years later as the Brauer-Suzuki-Wall The-
orem [BSW]. Surprisingly, the easy case of this theorem together with some of
the key non-character-theoretic ideas for its proof had been discovered and pub-
lished in 1899 by Burnside [Bu2], a result of which deserves recognition as the first
classification theorem for finite simple groups:

Theorem (Burnside, 1899). Let G be a finite nonabelian simple group of even
order. Suppose that every element of G is either an involution (i.e. an element of
order 2) or is of odd order. Then G ∼= SL(2, 2n) for some integer n ≥ 2.

Note that Burnside’s hypothesis can be reformulated in the CA-spirit as follows:
Suppose that G is a group of even order in which the centralizer of every invo-

lution of G is an abelian group of exponent 2.
Burnside’s beautiful paper dwelt in undeserved obscurity until it was rediscovered

by Walter Feit around 1970 to the great surprise of Brauer. It is an example of an
important paper which had no impact on the history of the field.

In 1952 Brauer moved to Harvard and in 1954 he addressed the International
Congress of Mathematicians, beginning with the following words:

“The theory of groups of finite order has been rather in a state of stagnation in
recent years. This has certainly not been due to a lack of unsolved problems. As
in the theory of numbers, it is easier to ask questions in the theory of groups than
to answer them. If I present here some investigations on groups of finite order, it
is with the hope of raising new interest in the field.”

Brauer focussed primarily on groups of even order and announced, in addition
to the Brauer-Suzuki-Wall Theorem on PSL(2, q), the Brauer-Fowler bound on the
order of a finite simple group of even order, given the order of one of its involution
centralizers, and a characterization of PSL(3, q) and M11 via the centralizer of
an involution. Because of its generality, the Brauer-Fowler Theorem [BF] had a
particularly great psychological impact.

Brauer-Fowler Theorem. Let G be a finite simple group of even order containing
an involution t. If |CG(t)| = c, then |G| ≤ (c2)!.

The specific bound is useless in practice and even the Brauer-Fowler argument
is only of value in a few small cases. Nevertheless the theorem asserts that for
any finite group H the determination of all finite simple groups with an involution
centralizer isomorphic to H is a finite problem. In the ensuing decades Brauer,
Janko and their students would show that the problem was not only finite but
tractable. This suggested a two-step strategy for the proof of the Classification
Theorem:

Step 1: Determine all possible structures for an involution centralizer in a finite
simple group.

Step 2: For each possible structure, determine all finite simple groups with such
an involution centralizer.

Brauer had proved some sample cases for Step 2. No one had a clue how to
do Step 1. Indeed no one had a clue how to show that a nonabelian finite simple
group even contains an involution. Or did they? Just a few months after the
Congress, on December 24, 1954, a historic paper was submitted by Suzuki [Su2]
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to the Bulletin of the A.M.S. It contained a beautiful proof of the nonexistence of
nonabelian simple CA-groups of odd order. This was the first breakthrough in the
direction of the Miller-Burnside conjecture concerning the solvability of groups of
odd order. Suzuki’s CA-group proof had two parts. As mentioned above, a rather
easy “local” analysis gives the structure of the maximal subgroups of a CA-group G.
Then a brilliant application of exceptional character theory leads to a contradiction.
Thompson writes [T4]:

“Suzuki’s CA-theorem is a marvel of cunning.... Once one accepts this theorem
as a step in a general proof, one seems irresistibly drawn along the path which was
followed [in the Odd Order Paper].”

Nevertheless the difficulties for the proof of the Miller-Burnside Odd Order Con-
jecture still seem insuperable. In Suzuki’s case, the maximal subgroups of G are
easily seen to be Frobenius groups. In the case of an arbitrary finite simple group
of odd order, one could assume by induction that every maximal subgroup was a
solvable group. But the possible structures of solvable groups are far more elabo-
rate than the structures of Frobenius groups. Without major reductions using local
analysis, the requisite character theory would be unthinkably difficult.

The next breakthrough came from an unexpected direction. There was consid-
erable activity in the 1950’s on the Burnside and Restricted Burnside Problems,
including Kostrikin’s proof of the Restricted Burnside Theorem for groups of prime
exponent. In this context Philip Hall and Graham Higman wrote a remarkable pa-
per [HH] in 1956 aimed at the reduction of the Restricted Burnside Problem to the
prime-power exponent case. They provided an insightful analysis of the structure
of finite p-solvable groups (a class containing all solvable groups). In particular
they established the following results.

Hall-Higman Lemma. Let G be a finite p-solvable group and let X be the largest
normal subgroup of order prime to p. Let P be a p-subgroup of G such that XP/X
is the largest normal p-subgroup of G/X and let V = P/Φ(P ). Then H = G/XP
acts by conjugation as a faithful p-solvable group of linear operators on the vector
space V and H has no nontrivial normal p-subgroup.

Hall-Higman Theorem B. Let H be a p-solvable group of linear operators on a
finite-dimensional vector space V over a field of characteristic p. Suppose that H
has no nontrivial normal p-subgroup. If x ∈ H with xp = 1 6= x, then either the
minimum polynomial of x in its action on V is (t−1)p or the following conclusions
hold: p is a Fermat prime, H has a nonabelian Sylow 2-subgroup and the minimum
polynomial of x is (t− 1)p−1.

The Hall-Higman theorems conveyed some important messages. First of all, if
G is a complicated finite solvable group (in particular, far from nilpotent), then
G has a comparatively uncomplicated normal subgroup N = Op′p(G) with the
property that G/N is isomorphic to a group of linear operators on a vector space
V arising as a quotient of N . Secondly, Theorem B shows how linear algebra can
be exploited to analyze the structure of G/N and it displays a distinction between
the structure of p-solvable groups and the structure of many parabolic subgroups
in groups of Lie type in characteristic p. For example, if H is the stabilizer of a
1-space in GL(n+ 1, p), N = Op′p(H) and Z = Z(H) = Op′(H), then N = Z × V ,
where V = Op(H) which may be thought of as an n-dimensional vector space over
Fp. Moreover H = H/N is isomorphic to GL(n, p) acting naturally on V . Thus
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H has no nontrivial normal p-subgroup, but if p is odd, then for many x ∈ H of
order p, the minimum polynomial of x in its action on V has degree less than p.
Indeed the transvections have quadratic minimum polynomial (t − 1)2. Of course
H is not a p-solvable group when p > 3. (When p = 3, we are precisely in one of
the exceptional cases of Theorem B: H has a normal quaternion subgroup and 3 is
a Fermat prime.)

Thus far the work of the 1950’s could be regarded as the brilliant belated ful-
fillment of the work of the period 1890–1910. Indeed Chevalley and Steinberg had
created the analogue over finite fields of the Lie theory of Killing and Cartan, com-
pleting the work of Dickson. Brauer, Suzuki and Feit had extended the character
theory of Frobenius and Burnside and its applications to the classification of small
simple groups. The study of Zassenhaus groups by Feit, Ito and Suzuki was nearing
completion, tapping out a vein of permutation group theory going back to Jordan.
Some pregnant possibilities lay in the papers of Suzuki and Hall-Higman. Never-
theless there was some truth to Brauer’s assertion at the International Congress of
Mathematicians in 1970 on the occasion of Thompson’s receiving the Fields Medal:
“...up to the early 1960’s, really nothing of real interest was known about general
simple groups of finite order.”

4. Enter John Thompson

At the suggestion of Marshall Hall, Thompson attacked in his dissertation [T1]
the long-standing conjecture that the Frobenius kernel is always nilpotent. This is
equivalent to the following assertion:

Thompson’s Thesis. Let G be a finite group admitting an automorphism α of
prime order with CG(α) = 1. Then G is a nilpotent group.

If G is nilpotent, then for every prime p dividing |G|, G has a normal subgroup
of index p. Thus it is natural to attack the problem via transfer. Choosing an
α-invariant Sylow p-subgroup P of G, induction applies to the normalizer of char-
acteristic subgroups of P . It follows from Grün’s Second Theorem [Gu] that Z(P )
cannot be weakly closed in P . This led Thompson to the study of weak closures of
abelian subgroups of P .

Definition. Let A ≤ H ≤ G. The weak closure of A in H with respect to G is

W = 〈Ag : Ag ≤ H〉.
Equivalently, W is the smallest subgroup of H containing A and weakly closed in
H (with respect to G).

Thompson’s analysis is quite delicate but eventually leads to a Hall-Higman-
type situation involving a pair of elementary abelian p-groups A and B which
normalize each other but do not commute. Thus [A,B] 6= 1 but [A,B] ≤ B and
so [A,B,B] = 1. Hence some element x of B viewed as a linear operator on
A has quadratic minimum polynomial. Thanks to freedom in the choice of p, this
contradicts the Hall-Higman Theorem B. In fact the quadratic action of x permits a
more elementary contradiction, but the shadow of Hall-Higman is definitely visible.

Thompson’s thesis had immediate implications for the study of Zassenhaus
groups, clarifying as it did the structure of Frobenius kernels. Even more im-
portant, it was the beginning of Thompson’s profound analysis of the structure
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of solvable subgroups of finite simple groups. In the summer of 1958 while work-
ing on his thesis, Thompson visited Wielandt in Tübingen, and Huppert reports
Wielandt’s comment:

“Das is ein verdammt scharfsinniger Bursche. Man kann etwas lernen von ihm.”
[“That’s one damn sharp guy. You can learn something from him.”]

Thompson completed his theorem and sent his work to Philip Hall in Decem-
ber 1958. Hall immediately grasped the import of Thompson’s achievement and
suggested a reformulation of one of the main theorems which liberated it from the
context of groups with operators.

Theorem. Let K be a finite group, p an odd prime and P a Sylow p-subgroup of
K. Suppose that K 6= XP for any normal p′-subgroup X. Then there exists a char-
acteristic subgroup D of P of nilpotence class at most 2 such that NK(D)/CK(D)
is not a p-group.

Further consideration of weak closure and the Hall-Higman Theorem B led
Thompson to the discovery of the J-subgroup and the Thompson factorization
theorems. There are two slightly different definitions of the J-subgroup. I shall
give the one which has become more popular recently.

Definition. Let P be a finite p-group and let d be the maximum rank of an elemen-
tary abelian subgroup of P . Let A(P ) denote the set of all elementary subgroups
of P of rank d. Then the Thompson subgroup J(P ) is

J(P ) = 〈A : A ∈ A(P )〉.

Let H be a finite solvable group whose Fitting subgroup F is a p-group. For R
any p-group denote by Ω1(R) the subgroup generated by the elements of order p in
R. If P is a Sylow p-subgroup of H , then Z(P ) ≤ Z(F ) by Fitting’s Theorem and
so

V = VH = 〈Ω1(Z(P h)) : h ∈ H〉
is a subgroup of Ω1(Z(F )). In particular V may be regarded as an H-module
on which F acts trivially. The subgroup C which is the kernel of the H-action
on V may be larger than F , but it shares with F the property that H/C has no
nontrivial normal p-subgroup. Thus H/C may be regarded as a solvable subgroup
of GL(V ) with no nontrivial normal p-subgroup, exactly the Hall-Higman setup.
Under suitable additional hypotheses, for example that H has odd order, Thompson
shows that no A ∈ A(P ) can act nontrivially on V , i.e. J(P ) ≤ C. But then Sylow’s
Theorem immediately yields the Thompson Factorization:

H = CNH(J(P )) = CH(Ω1(Z(P )))NH(J(P )).

When hypotheses such as solvability and odd order are dropped, the analysis be-
comes much more complicated, but the fundamental philosophy remains the same.

Definition. A finite group G is of (local) characteristic p-type if the following
condition is satisfied by every p-local subgroup H of G: Let F be the largest
normal p-subgroup of H . Then CH(F ) ≤ F .

Whenever G is a group of characteristic p-type, Thompson’s analysis may be
undertaken. Having chosen a Sylow p-subgroup P of G, it shows that there are
two p-local subgroups of fundamental importance: C = CG(Ω1(Z(P ))) and N =
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NG(J(P )). If H = NG(D) for some nonidentity normal subgroup D of P and H 6=
(H∩C)(H∩N), then VH must be a “failure of factorization module” forH/CH(VH).
As stated here, this is a linguistic tautology, but in fact it has mathematical content.
In particular, failure of factorization modules are “quadratic modules”, and around
1970, Thompson [T3] classified all “quadratic pairs” for p ≥ 5, i.e. pairs (H,V )
where V is a faithful irreducible quadratic module for H in characteristic p and
H is generated by its elements of order p having quadratic minimum polynomial.
Necessarily H is a product of groups of Lie type in characteristic p and V is a tensor
product of small modules. This has been extended to the case p = 3, where new
examples arise such as spin modules for the spin covers of the alternating groups
and the Leech lattice mod 3 for the Conway group and some of its subgroups. When
p = 2, all involutions act quadratically, but the analysis of failure of factorization
modules remains meaningful and is at the heart of the classification of simple groups
of characteristic 2-type.

Glauberman’s discovery of the ZJ-Theorem [Gl2] around 1967 provided an easier
approach than factorization theorems in the context of groups of odd order. Re-
cently Stellmacher [Sl1] has established an analogue of the ZJ-Theorem for groups
of order prime to 3. However, in the general context, when the primes 2 and 3 are
intertwined in the subgroup structure of G, Thompson’s more robust factorization
approach returns to center stage.

By 1959 when Marshall Hall published his text The Theory of Groups [Ha], he
could write in dramatic contrast to Brauer’s remarks in 1954: “Current research in
Group Theory, as witnessed by the publications covered in Mathematical Reviews, is
vigorous and extensive.” Hall invited Thompson to Caltech in the summer of 1959
and they extended Suzuki’s theorem on CA-groups of odd order to the nilpotent
centralizer case. They sent a copy of the manuscript to Feit, who substantially im-
proved the character theory. This launched the collaboration of Feit and Thompson
on groups of odd order. Suzuki’s CA-paper was 10 pages in length. The CN-paper
[FHT] was 17 pages. Feit and Thompson estimated it would take about 25 pages
to prove the Odd Order Theorem. That proved to be quite an underestimate.

Fundamental to the analysis of the minimal simple group G of odd order as
pursued in the Odd Order Paper is the dichotomy between those groups G in
which the intersection M ∩Mg is always “small”, for M a maximal subgroup of G
and g ∈ G−M , and those groups G in which the intersection is sometimes “large”.
The former case was primarily to be handled by extending the Brauer-Suzuki-
Feit analysis of exceptional characters to an even more complicated setting. The
local methods Feit and Thompson introduced to treat the latter case had profound
impact on the rest of the Classification. By contrast the Odd Order Paper was the
high watermark for character theory in the Classification. Future applications were
few and far less intricate. Because of the greater resonance of the local methods
in future papers, I shall discuss them along with related generalizations in the
remainder of this section.

In their attack on the “large” case, Feit and Thompson were motivated by an
important paper of Philip Hall [H5] from 1956, extending his earlier work on criteria
for solvability in terms of permutability of Sylow subgroups. Hall introduced the
symbol Epq to denote the existence in G of a Hall {p, q}-subgroup. As Thompson’s
notes in [T4], Hall’s 1956 paper “suggests that a group is solvable if and only if it
satisfies Ep,q for all primes p, q.” Thompson undertook to prove such E-theorems
for groups of odd order. He writes:
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“From my work on the Frobenius kernel, I wanted to work upwards from the
bottom, and the bottom is the Fitting subgroup. So, in trying to prove Ep,q, I
could see the value in trying to locate q-subgroups Q which are normalized by a
Sylow p-subgroup of G.”

This led to the fundamental concept of A-signalizers.

Definition. Let A and H be subgroups of the group G with A a p-group and let π
be a set of primes not containing p. The set IH(A;π) is the set of all A-invariant
π-subgroups of H , and I∗H(A;π) is the set of maximal elements of IH(A;π) under
inclusion.

Thus in this language Thompson was seeking Q ∈ IG(P ; q) for P a Sylow p-
subgroup of G. If H is an A-invariant solvable p′-group, then by Philip Hall’s
theorem, the members of I∗H(A;π) are Hall π-subgroups of H and are transitively
permuted by CH(A). Thompson saw how to extend this result to the context of
local solvability.

Thompson Transitivity Theorem. Let G be a finite group in which every p-
local subgroup is solvable. Let A be an abelian p-group of rank at least 3 which is
a Sylow p-subgroup of CG(A). Then CG(A) transitively permutes the elements of
I∗G(A; q) for all primes q 6= p.

If P is a Sylow p-subgroup of G containing A, then as NG(A) permutes the
elements of I∗G(A; q) with CG(A) acting transitively, Lagrange’s Theorem yields
that NP (A) normalizes some Q ∈ I∗G(A; q). Bootstrapping upward often yields
some Q ∈ I∗G(P ; q), as Thompson desired.

The requirement that A have p-rank at least 3 is unavoidable and makes precise
the above-mentioned subdivision of the analysis into small and large cases, not
only in the Odd Order Paper but throughout the Classification. The Transitivity
Theorem is a key tool in the proof of the Uniqueness Theorem below, which is the
basic result for eliminating the “large” case:

The Feit-Thompson Uniqueness Theorem. Let G be a finite group of odd or-
der in which every proper subgroup is solvable. Suppose that K is a proper subgroup
of G such that either r(K) ≥ 3 or r(CG(K)) ≥ 3. Then K is contained in a unique
maximal subgroup of G. (Here r(K) denotes the maximum rank of an abelian p-
subgroup of K, as p ranges over all prime divisors of |K|.)

A beautiful proof of the Uniqueness Theorem, incorporating Glauberman’s ZJ-
Theorem and his own new ideas, was discovered by Bender [Be1] in the late 1960’s.
Around the same time, Gorenstein and Walter undertook a profound analysis of
the Feit-Thompson signalizer arguments with the goal of extending the analysis
to a context where p-local subgroups are no longer solvable. They solved this
problem with the concept of an A-signalizer functor, which evolved over the years,
the following elegant definition being due to Goldschmidt [Go2].

Definition. Let A be an abelian p-subgroup of the finite group G. Then a function
θ mapping the set A# into the set of solvable A-invariant p′-subgroups of G is called
a solvable A-signalizer functor if θ(a) = θ(CG(a)) ≤ CG(a) for all a ∈ A# and the
following “balance equation” holds for all a,b ∈ A#:

θ(CG(a)) ∩ CG(b) = θ(CG(b)) ∩CG(a).
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They then focussed attention on the sets Iθ(A, π) consisting of those members
X of IG(A, π) such that CX(a) ≤ θ(CG(a)) for all a ∈ A#. Finally Iθ(A) is the
union of all of these sets, and the Solvable Signalizer Functor Theorem states:

Solvable Signalizer Functor Theorem. Let G be a finite group, A an abelian
p-subgroup of G with r(A) ≥ 3 and θ a solvable A-signalizer functor. Then Iθ(A)
has a unique maximal element θ(G).

Early versions of this theorem were proved around 1969 by Gorenstein [G2]. The
full theorem for p = 2 was established by Goldschmidt [Go3], and then finally the
general case was proved by Glauberman [Gl4] in 1973. The proof entails remaining
in the realm of solvable θ-subgroups of G where it is possible to recover some of
Thompson’s results, such as the Transitivity Theorem. A Nonsolvable Signalizer
Functor Theorem was proved in the late 1970’s by McBride [McB1], [McB2].

Once θ(G) exists, the fundamental dichotomy is:

θ(G) 6= 1 or θ(G) = 1.

When θ(G) 6= 1, the simplicity of G implies that M = NG(θ(G)) is a proper
subgroup of G containing the normalizers of many p-subgroups of G. We call such
a subgroup a p-uniqueness subgroup. In many contexts, such as the Odd Order Pa-
per, θ(G) = 1 implies that G is of characteristic p-type and Thompson factorization
analysis may be pursued. In the Odd Order Paper the absence of failure of fac-
torization modules again leads to the existence of p-uniqueness subgroups. This is
an important milestone, but considerable difficult character theory and generator-
and-relations arguments are still necessary to complete the proof of the Odd Order
Theorem.

Adrian Albert organized a Group Theory Year at the University of Chicago in
1960-61. This was perhaps the most successful mathematical year ever organized.
Feit and Thompson completed most of their work on the Odd Order Theorem.
Suzuki pursued his research on 2-transitive permutation groups. Gorenstein and
Walter began their collaborative study of groups with dihedral Sylow 2-subgroups.
The first real signs appeared of the evolving sociology of the classification effort
as a team project. (The earlier Brauer-Suzuki-Wall paper was an instance of par-
allel research arriving at approximately the same point at the same time.) What
also became evident was the unprecedented scale of the undertaking. The Odd
Order Paper was an unbelievable 255 pages in length, and there was no fat on the
manuscript. Many of the later manuscripts would follow this triple digit pattern,
culminating in the 731 page Memoirs volume by Gorenstein and Lyons [GL1] and
the forthcoming 800+ page Quasithin Paper by Aschbacher and S. D. Smith [AS].

Feit and Thompson published the Odd Order Paper in 1963 [FT]:

The Odd Order Theorem. All finite groups of odd order are solvable.

This short sentence and its long proof were a moment in the evolution of finite
group theory analogous to the emergence of fish onto dry land. Nothing like it had
happened before; nothing quite like it has happened since. I compare the character
theory (Chapters 3 and 5) to Bach’s B Minor Mass, the glorious summation of
everything which had been achieved by Frobenius, Brauer, Suzuki and Feit himself,
on the theme of wresting information about group structure from the arithmetic of
induced characters. It is hard to imagine pushing this analysis through in a more
complicated setting. Luckily no one ever needed to. By contrast, I compare the
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local analysis (Chapter 4) to Beethoven’s Ninth Symphony. Looking back at earlier
group theory it declared: “O Freunde, nicht diese Töne!” Looking ahead to the
great collaborative effort of the next 40 years whose size and shape it presaged, it
declared: “Sondern lasst uns angenehmere anstimmen!”

5. Back to the prime 2

Once the Odd Order Paper was completed, attention naturally focussed on the
prime 2. The work of Brauer, Suzuki and Wall in the 1950’s had shown how the
existence of involutions could be exploited to characterize simple groups starting
from fairly detailed 2-local data. The Odd Order Paper (and Thompson’s evolving
work [T2] on minimal simple groups of even order) were the only models for arriving
at such detailed local data. The dichotomy which had emerged in the Odd Order
Paper between groups of p-rank at most 2 and those of p-rank at least 3 suggested
the importance of groups of 2-rank 2 as a separate problem. (A 2-group of rank
1 is either cyclic or quaternion. An old argument (sketched earlier) shows that no
simple group of even order except C2 has cyclic Sylow 2-subgroups. Brauer and
Suzuki [BS] had proved that no simple group has quaternion Sylow 2-subgroups.)
Gorenstein and Walter [GW1] completed the dihedral case. Luckily, an elegant
argument of Alperin showed that a 2-group of 2-rank 2 which was a candidate to
be a Sylow 2-subgroup of a simple group must fall into one of four infinite families
(dihedral, semidihedral, wreathed, homocyclic abelian) or be of one exceptional
isomorphism type. Alperin’s proof was made possible by an elegant application of
modular character theory to 2-fusion analysis by Glauberman [Gl1]:

Glauberman’s Z∗-Theorem. Let G be a finite group with no nontrivial normal
subgroup of odd order. Let z be an involution of G. Either z ∈ Z(G) or z commutes
with a G-conjugate zg with zg 6= z.

Alperin and Gorenstein undertook the semidihedral/wreathed case, which turned
out to be quite difficult and to require considerable 2-modular character theory, for
which they turned to Brauer. By 1969 simple groups of 2-rank at most 2 had
been classified [ABG1], [ABG2]. Once it could be assumed that G had 2-rank at
least 3, it was at least possible to begin 2-signalizer functor analysis. This was
not, however, quite enough to pass gracefully from the conclusion of the Signalizer
Functor Theorem for p = 2 to the existence of a 2-Uniqueness Subgroup of the
desired type when θ(G) 6= 1. To bridge this gap Gorenstein and Harada produced
a monumental work [GH] classifying simple groups of sectional 2-rank at most 4.
Later Harada [Hr1] discovered a short and elegant argument to build the same
bridge, though their magnum opus was quoted in many other contexts.

When a 2-uniqueness subgroup M exists, there remains the problem of identi-
fying the group G. The obvious examples are the groups SL(2, 2n), PSU(3, 2n)
and Sz(2n), which arise as the conclusions of Suzuki’s Theorem on 2-transitive
permutation groups. The strongest form of 2-uniqueness subgroup can be defined
in permutation group language as:

Definition. A group G has a strongly embedded subgroup M if G is a transitive
permutation group of even order in which every involution fixes exactly one point.
(M is the stabilizer of a point.)
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One obvious gap between this definition and Suzuki’s hypotheses is that G is
not assumed to be 2-transitive. Indeed this need not be the case if G has 2-rank 1.
However, Bender [Be3] succeeded in 1968 in proving the following beautiful theorem:

Bender’s Strongly Embedded Theorem. Let G be a finite simple group with
a strongly embedded subgroup M . Then G satisfies the hypotheses of Suzuki’s The-
orem. Thus G ∼= SL(2, 2n), Sz(2n) or PSU(3, 2n).

In 1973 building on work of Gorenstein and Walter and of Shult, Aschbacher
[A1] was able to strengthen Bender’s Theorem to the precise 2-Uniqueness Theorem
needed for the Signalizer Functor Method.

Paralleling these developments was another line of research which yielded dra-
matic surprises. Beginning early in the 1960’s several researchers began to analyze
simple groups with abelian Sylow 2-subgroups. It soon became clear that a crucial
case was when the centralizer of an involution z has the form:

CG(z) = 〈z〉 × L ∼= Z2 × PSL(2, q)

for some q ≡ ±3 (mod 8). Thompson thought he could show that necessarily
q = 32n+1, a case arising in the simple Ree groups 2G2(32n+1), but Janko [Ja]
discovered that one further case was possible: q = 5. Janko’s discovery of J1 (a
subgroup of G2(11)), the first new sporadic simple group in a century, rivetted the
attention of the group theory world and began a decade of feverish exploration and
discovery in which 20 more sporadic groups came to light. The strategy of studying
promising involution centralizers soon led Janko to two more simple groups with
an isomorphic involution centralizer, and shortly thereafter rewarded Held, Lyons
and O’Nan with simple groups. The construction of Janko’s second group, J2, by
M. Hall as a rank 3 permutation group inspired a flurry of constructions of new
simple groups by D. Higman and Sims, McLaughlin, Suzuki and Rudvalis (the
latter a prediction, followed by a construction by Conway and Wales). Conway’s
investigations of the Leech lattice and Fischer’s study of 3-transposition groups
(discussed below) each led to three new sporadic simple groups.

A crowd of new Ph.D.’s entered the fray in the late 1960’s and the classification
project entered high gear. The level of excitement is captured in the language of
Gorenstein’s introduction to his book Finite Groups [G1], published in 1968:

“In the past ten years there has been a tremendous surge of activity in finite
group theory. The period has witnessed the first serious classification theorems
concerning simple groups and the discovery of several new families of simple groups;
and, above all, the fundamental question of the solvability of groups of odd order
has been answered. ... Out of the work of Feit and Thompson ... and Suzuki...,
there is gradually emerging a body of techniques and a series of general methods for
studying simple groups. Although the entire field is presently in an excited state
of ferment and fluidity, as recent basic work of Glauberman and Alperin clearly
indicates, a degree of stability appears to be settling over certain aspects of the
subject.”

In 1969, John Walter [Wa] achieved the reduction of the problem of groups
with abelian Sylow 2-subgroups to the specific centralizer of involution problem
which had been studied by Thompson, Janko and others. In this work he was
forced to analyze the 2-signalizer problem in a context of nonsolvable involution
centralizers. Soon he and Gorenstein began their deep analysis of the Signalizer
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Method, leading not only to the concept of a signalizer functor discussed above but
to other fundamental concepts of balance and generation.

The search for a suitable replacement for the Fitting subgroup, which could be
regarded as the “bottom” of a nonsolvable group led Gorenstein and Walter [GW2]
to the p-layer and extended p-layer. Inspired by comments of Gorenstein, Bender
[Be2] was led to the generalized Fitting subgroup.

Definitions. 1. A finite group L is quasisimple if L = [L,L] and L/Z(L) is a
simple group. A finite group E is semisimple if E is the commuting product of
quasisimple groups.

2. If H is a finite group, then E(H) is the unique maximal normal semisimple
subgroup of H . The generalized Fitting subgroup of H is F ∗(H) = E(H)F (H).

3. If H is a finite group, p is a prime and Op′(H) is the largest normal p′-
subgroup of H , then the p-layer of H , Lp′(H), is the subgroup of the full preimage
of E(H/Op′(H)) generated by p-elements.

The generalized Fitting subgroup F ∗(G) plays the role of the foundation on
which G stands, in the following sense:

Bender’s F ∗-Theorem. Let H be any finite group. Then F ∗(H) is the commut-
ing product of the semisimple group E(H) and the nilpotent group F (H). Moreover
F ∗(H) contains CH(F ∗(H)). Thus H/Z(F (H)) acts faithfully as a group of auto-
morphisms of F ∗(H) and, in particular |H | ≤ |F ∗(H)|!.

For the structure theory of finite groups, F ∗(G) is the key concept. On the
other hand for the purpose of studying the embedding of a 2-local subgroup H in a
finite group G, the 2-layer of H is more important, because it enjoys the following
fundamental “balance” property, discovered by Gorenstein and Walter [GW3].

L-Balance Theorem (Gorenstein-Walter). Let H be a 2-local subgroup of the
finite group G. Then L2′(H) ≤ L2′(G).

This crucial result together with various extensions and modifications facilitates
the comparison of the centralizers of two different commuting involutions in a finite
group G. Its proof relies fundamentally on a weak version of Schreier’s Conjecture,
which was proved by Glauberman as a corollary of his Z∗-Theorem. A posteriori
we know the truth of the full Schreier Conjecture and hence the validity of the
analogous Lp′-Balance Theorem for all primes p.

In addition to these major theorems, the Signalizer Functor Method requires a
good choice of signalizer functor. A candidate functor was proposed by Gorenstein
and Walter. Later Goldschmidt introduced a better functor, which was further
modified and implemented by Aschbacher in his characterizations of simple groups
of Lie type. By 1971 the stage was mostly set for the final attack on CFSG. Or was
it?

6. Gorenstein’s Classification Program

On the one hand major conceptual advances in the understanding of the lo-
cal structure of finite simple groups had been achieved. On the other hand the
great classification theorems of the 1960’s from the Odd Order Theorem through
the Alperin-Brauer-Gorenstein Theorem, while consuming almost 1,500 journal
pages, had only completed the characterization of the groups PSL(2, q), PSL(3, q),
PSU(3, q), Sz(2n) and 2G2(3n) (the split BN -pairs of rank 1 in the language of
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Tits) and a few miscellaneous small groups: A7, M11 and J1. (Indeed the Ree group
characterization was not yet complete.) The vast ocean of finite simple groups re-
mained still untamed and perhaps even still uncharted.

Already in 1971, Gorenstein proposed in a series of lectures in Israel a Classifi-
cation Program. He refined this to a 16-step program (published in an appendix
to [G3]), which he announced during a summer group theory conference at the
University of Chicago in 1972. In spite of the great strides of the previous decades,
Gorenstein remained one of the few believers in the success of the Classification
Project in our lifetimes. As he wrote later [G4]: “The program was met with con-
siderable skepticism. I doubt that I made any converts at the time – the pessimists
were still strongly in the ascendancy.” This was to change dramatically in just a
few years.

At the time of Gorenstein’s lectures, the best-elaborated strategy dealt with
groups of “odd type”, i.e. groups of small 2-rank or groups in which L2′(CG(z)) 6= 1
for some involution z. Indeed the “small odd type” case had just been completed
by Gorenstein and Harada. (At the time groups in which L2′(CG(z)) 6= 1 for some
involution z were called groups of component type. Later this became ambiguous
as p-components in groups of characteristic 2-type were studied by Gorenstein and
Lyons and the dichotomy odd type/even type emerged.)

The small case was Step I of Gorenstein’s 16 steps. The signalizer analysis for the
large odd-type case was Step II. It had been initiated by Gorenstein and Walter.
The anticipated endpoint of the signalizer analysis was the following assertion,
which was finally established by 1979:

The B-Theorem. Let G be a finite simple group. Then L2′(CG(z)) = E(CG(z))
for every involution z of G.

Steps IV, VI, VII and VIII dealt with various aspects of the Odd Type Case:
the final identification problem for the groups of Lie type in odd characteristic, the
alternating groups and most of the sporadic simple groups. A systematic treatment
of this identification problem, given a precise involution-centralizer, had been ini-
tiated by Brauer, Fong, W. Wong and Phan. To get a feeling for such a problem
in the easiest possible case (which actually leads not to a simple group, but to an
almost simple group), it is instructive to consider the following problem (which is
false for certain small n, as indicated below):

Problem. Suppose that G is a finite group containing an involution t such that
CG(t) = 〈t〉 × L, with L ∼= Sn, the symmetric group on n letters, n ≥ 5. Suppose
further that if ti is a transposition in L, then CG(ti) = 〈ti〉 × Li ∼= CG(t). Prove
that G ∼= Sn+2.

When n ≥ 7, it is easy to write down a set {t = t0, t1, t2, . . . , tn} of involutions
with ti = (i − 1, i) ∈ L for 2 ≤ i ≤ n and with t1 ∈ CG(tn) and to verify all of
the relations in the standard presentation for Sn+2 as a Coxeter group, except for
the relation t1tn−1 = tn−1t1. When n is large enough, the final relation can be
confirmed in the centralizer of some ti, but when n is small, the relation cannot
be established. For example when n = 6, the Weyl group of E6 is an additional
possibility. Yet another problem arises from the possibility that G0 = 〈t0, t1, . . . , tn〉
is a proper subgroup of G. This actually occurs when n = 10 and G = Aut(F5),
the automorphism group of Harada’s sporadic simple group, which contains S12

as a proper subgroup. The latter problem can be analyzed using Aschbacher’s
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extension of Bender’s Strongly Embedded Theorem. The former problem bedevils
the analysis of small cases. An analogous procedure applies to the groups of Lie
type, using presentations by Steinberg or by Curtis and Tits in place of Coxeter
presentations.

The starting point of the final identification step discussed above was detailed
information about the structure of CG(z), or at least about E(CG(z)). The terminal
point of the B-Theorem was important but vague information about E(CG(z)).
There remained a substantial gap. The principal difficulty was the following. A
priori E(CG(z)) could be the commuting product of arbitrarily many quasisimple
“components”. In most of the actual examples, the quasisimple components are
stabilizers of eigenspaces for the semisimple linear operator z. Being an involution,
z can have no more than two eigenvalues, hence no more than two components.
(In fact this assertion is false because of the fact that the derived subgroup of the
orthogonal groupO+(4, q) is a product of two quasisimple groups when q > 3. Thus,
most dramatically, D4(q), q odd, q > 3, has an involution t such that E(CG(t))
is the commuting product of four SL(2, q)’s. But roughly speaking the assertion
is true.) The problem was to provide an a priori proof of this observation, i.e. to
bound the number of quasisimple components in the centralizer of some involution.
This problem constitutes Steps III and V of Gorenstein’s Program. Once that
was achieved, in an inductive proof of the Classification Theorem, the possible
isomorphism types of the components would be known from the list of conclusions
of the Classification Theorem. Hence a finite number of families of Brauer-type
involution-centralizer theorems would have to be proved.

A first version of such a bounding theorem was proved by Powell and Thwaites
[PT]. Shortly thereafter, an optimal theorem was obtained by Aschbacher [A2],[A3]
in 1973.

Aschbacher’s Component Theorem. Let G be a finite simple group and sup-
pose that the B-Theorem holds. Suppose that E(CG(t)) 6= 1 for some involution t
of G. Then there exists an involution z of G and a quasisimple “standard” com-
ponent K of C = CG(z) such that CC(K) either has 2-rank 1 or is solvable with
elementary abelian or dihedral Sylow 2-subgroups. In particular C has at most two
components and K / C unless K has 2-rank 1.

Now the logic of the Large Odd Type Case, as clarified by Aschbacher’s work is:
Step 1. Prove the B-Theorem.
Step 2. Prove the Component Theorem.
Step 3. Solve the standard component problem for every possible quasisimple

group K such that K/Z(K) arises as a conclusion of the Classification Theorem.
The chronology of the Large Odd Type Case on the other and was that Step 2 (by

Aschbacher) preceded Step 1, while Step 3 was accomplished in a huge number of
papers scattered from the early 1950’s to 1981. Gorenstein’s book [G5] is a detailed
chronicle of this portion of the Classification proof. His bibliography contains 144
references, almost all crucial to this proof, and this omits many essential references
from the bibliography of [G4].

A strategy for the proof of theB-Theorem was developed by Aschbacher, Thomp-
son and Walter at a conference in Sapporo in 1974 and was implemented by Asch-
bacher, Gilman, Harris, Solomon, Walter and others, primarily during the 1974-75
Group Theory Year at Rutgers University. (See [So] for a survey article.) A major
ingredient in the proof is Aschbacher’s characterization of the groups of Lie type
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over fields of odd order [A4], for which he was awarded the Cole Prize in Algebra.
At this point the problem of groups of odd type was essentially “busted”, although
a substantial amount of mopping-up in terms of specific standard form problems
was required and accomplished in the ensuing years by Seitz, Finkelstein, Gomi
and others. (See [Se] for a survey article.)

Paralleling these developments was the exciting discovery of the Baby Monster
and the Monster by Fischer and Griess in 1973, together with the intensive inves-
tigation of their subgroups by Thompson, Harada, Conway, Norton and others. In
addition to four new simple groups, there emerged by 1979 the fascinating numerol-
ogy of Monstrous Moonshine associated with the characters of the Monster and its
subgroups. Early in 1974, Janko discovered J4, once more by a judicious choice of
involution-centralizer problem. With appropriate symmetry J4 was to turn out to
be the last of the sporadic simple groups to be unearthed.

Some additional words are in order about Fischer’s work. Baer had returned
to Germany in the mid 1950’s, taking a post in Frankfurt, where he trained and
inspired a generation (or two) of German algebraists, including Bender and Fischer.
Fischer undertook the study of groups G generated by a normal set D of involutions
whose pairwise products had restricted order. Baer (and independently Suzuki)
had proved that if elements of D pairwise generate 2-groups, then 〈D〉 is a 2-
group. Fischer considered the first new case, where the set of orders of xy for
x,y ∈ D was {1, 2, 3}. He called the elements of D 3-transpositions since the
transpositions in Sn have this property. In 1969 he succeeded in classifying simple
3-transposition groups [Fi], discovering in the process three sporadic simple groups.
Fischer’s work became a major inspiration both for Aschbacher and for Fischer’s
own student, Timmesfeld. Aschbacher generalized Fischer’s paper by classifying
odd-transposition groups, in which any two non-commuting elements of D have
product of odd order. Timmesfeld [Tm1] studied {3, 4}+-transposition groups,
where the set of orders is {1, 2, 3, 4} and if xy has order 4, then (xy)2 ∈ D, obtaining
a characterization of most of the groups of Lie type in characteristic 2 in terms of
root involutions. Fischer’s pursuit of all {3, 4}-transposition groups led him to the
Baby Monster. The combinatorial and geometric nature of this study informed
much of the thinking of Aschbacher and Timmesfeld, supplementing the arsenal of
techniques deployed earlier by Thompson.

7. Groups of characteristic 2-type

The last eight steps of Gorenstein’s program dealt with simple groups of charac-
teristic 2-type, i.e. simple groups G in which F ∗(H) is a 2-group for every 2-local
subgroup H of G. The prototypical examples are the groups of Lie type defined
over finite fields of characteristic 2, but there are also a few sporadic examples,
such as Co2, J4 and F3. With minor modification, Gorenstein’s eight steps were in
fact implemented: IX: Thin Groups (Aschbacher [A5]); X: Groups with a Strongly
p-Embedded (2-Local) Subgroup, p odd (Aschbacher [A8]); XI and XV: The Signal-
izer Functor Method and Component Theorem for Odd Primes (Gorenstein-Lyons
[GL1]); XII: Groups of Characteristic { 2,p }-Type (Timmesfeld et al. [Tm2]);
XIII: Quasithin Groups (Mason [Ms2]; Aschbacher-Smith [AS]); XIV Groups with
e(G) = 3 (Aschbacher [A7]); XVI Final Characterization of the Simple Groups of
Characteristic 2-Type (Gilman-Griess [GG]). I have taken some small liberties with
the names of Gorenstein’s steps.
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There was only one time that I saw Danny Gorenstein worried about the Classi-
fication Project. In the spring of 1975, Janko wrote a letter to Danny announcing
that he was giving up work on the Thin Group Problem, which he had been in-
vestigating for at least five years. Danny reported this to Thompson, who gave
the problem some thought but abandoned it later that spring. Danny was worried.
Maybe there was an impenetrable roadblock to the Classification.

What was the Thin Group Problem? In the N-Group Paper [T2] in which
he classified simple groups all of whose local subgroups are solvable, Thompson
introduced the parameter e(G).

Definition. Let G be a finite group. For H a 2-local subgroup of G, denote by
e(H) the maximum rank of an abelian subgroup of H of odd prime-power order.
Then let e(G) denote the maximum value of e(H) as H ranges over all 2-local
subgroups of G.

By the Odd Order Theorem and a theorem of Frobenius, if G is nonsolvable,
then e(G) ≥ 1. When e(G) = 1, we call G a thin group. Thus G is thin if all
odd-order Sylow subgroups of all 2-local subgroups of G are cyclic.

The parameter e(G) is of importance when G is a simple group of characteristic
2-type. The canonical examples for G are the groups of Lie type in characteristic 2,
and e(G) roughly measures the twisted Lie rank (BN -rank) of G. Thus we would
expect the thin simple groups of characteristic 2-type to be the groups PSL(2, 2n),
PSU(3, 2n) and Sz(2n). These are indeed the “generic” examples, but a few addi-
tional examples occur. If G has 2-rank at least 3, these are PSL(3, 4), 2F4(2)′ (the
Tits group) and 3D4(2). Aschbacher tackled this problem in the summer of 1975.

Starting in the early 1950’s, even before Chevalley’s constructions, Tits had
studied geometries associated with Lie-type groups and by the mid-1960’s had
achieved an elegant and monumental theory of buildings, chamber systems and
BN-pairs. Among other things, he classified [Ti] all finite irreducible BN-pairs of
rank at least 3 (i.e. those in which the Weyl group is neither cyclic nor dihedral).
In particular all finite simple BN-pairs of rank at least 3 are split, in the sense that
B = U(B ∩ N) where U is a nilpotent normal subgroup of B and U ∩ N = 1.
Fong and Seitz [FS] extended Tits’ result by classifying split BN-pairs of rank
2. In particular every simple group G of Lie-type defined over a finite field of
characteristic p is a split BN-pair with U a Sylow p-subgroup of G and with the
BN-rank equal to the twisted Lie rank of G. Moreover the associated building is
determined by the incidence relations among the so-called parabolic subgroups of
G, i.e. the subgroups of G containing a conjugate of B.

As the target groups for the Thin Group Theorem are all groups of Lie type in
characteristic 2, it is natural to study the maximal subgroups of G containing a
Sylow 2-subgroup U . If there is a unique such maximal subgroup M , one would
like to show that G is a split BN-pair of rank 1 with B = U(B ∩ N), i.e. G
satisfies Suzuki’s Theorem. In view of Bender’s Theorem, it suffices to show that
NG(D) ≤ M for every nonidentity D ≤ U . This is immediate by hypothesis if
D / U . In general one confronts a “pushing-up problem”:

Problem. To show that if S is a Sylow 2-subgroup of NG(D) with S < U , then
there exists a nonidentity characteristic subgroup C of S with C / NG(D).

If this is the case, then we can “push up” NG(D) to NG(C) which contains a
larger 2-group than S, namely NU (C). Continuing in this manner one eventually
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pushes N = NG(D) up to a 2-local N∗ containing U . But then N ≤ N∗ ≤ M by
hypothesis and Bender’s Theorem may be invoked to identify G. By a theorem of
Borel and Tits [GLS2, Theorem 3.1.1], this pushing-up process will always succeed
if G is a simple group of Lie type in characteristic 2. However, there are almost
simple examples where it fails, e.g. G = L〈γ〉, where L = PSL(3, 2n) and γ is a
graph automorphism of order 2. This is at the heart of the difficulty of this problem.

Because of the thin hypothesis a Thompson factorization for N = NG(D) is
essentially tantamount to the existence of the desired characteristic subgroup C.
Hence in studying obstructions to pushing-up, one is led to confront failure-of-
factorization situations. A fundamental example occurs when N/O2(N) ∼=
PSL(2, 2n) and V/Z(N) is a natural module for N/O2(N), i.e. a 2n-dimensional
irreducible F2[N/O2(N)]-module. Baumann [Ba] analyzed this situation and was
able to determine the possible structures for O2(N), introducing the Baumann sub-
group which is crucial in circumventing the difficulty mentioned above. Glauberman
and Niles [GN] extended his analysis. There still remained significant challenges, for
example, the pushing-up problem when N/O2(N) ∼= PSL(3, 2). Moreover pushing-
up is only part of the problem. Given a pair of “parabolics” (P1, P2) containing a
given 2-Sylow normalizer B, Aschbacher must still show (given the hypotheses and
prior results) that G ∼= 3D4(2). Nevertheless armed with these results and theorems
of Thompson, Janko and Timmesfeld, Aschbacher succeeded in proving the Thin
Group Theorem [A5]. He then continued to pursue the pushing-up problem, soon
proving the Local C(G, T )-Theorem [A6] from which he, Foote and others deduced
the Global C(G, T ) Theorem.

Global C(G, T ) Theorem. Let G be a finite simple group of characteristic 2-type
having 2-rank at least 3. Let T be a Sylow 2-subgroup of G and let C(G, T ) denote
the subgroup of G generated by the normalizers of all nonidentity characteristic
subgroups of T . If C(G, T ) < G, then C(G, T ) is a strongly embedded subgroup of
G and so G ∼= SL(2, 2n), Sz(2n) or PSU(3, 2n).

Aschbacher’s accomplishments in the years 1974–75 were staggering in their
depth and breadth. Belief mounted that nothing could stand between him and
the completion of the Classification.

Meanwhile Gorenstein and Lyons had begun their attack on the generic simple
groups of characteristic 2-type. Their goal was to characterize the simple groups
of Lie-type over fields of order 2n and their strategy was modelled on the strategy
developed by Gorenstein and Walter for the odd-type case. Their philosophy was
that the significance of the prime 2 in the odd-type context was not its evenness
but the fact that involutions are semisimple elements in groups of Lie type over
fields of odd order; indeed usually they even lie in a split torus. This dictates the
structure of centralizers of involutions which in turn dictates the shape of the proof.
Thus when the target group is a group of Lie type in characteristic 2, one should
still study the centralizers of semisimple elements of G; only these elements will
now have odd order. This strategy in essence goes back to Killing and the search
for a maximal toral subalgebra in a semisimple Lie algebra. It entails the choice
of changing primes from 2 to a suitable odd prime which would divide the order
of a split torus in G if possible. (Of course G is not known a priori to come from
an algebraic group. So “split torus” is meaningless. However, with the Lie type
examples in mind, Gorenstein and Lyons choose p to maximize the 2-local p-rank
of G, modifying this choice later in the analysis if necessary.)
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Many parts of the analysis do indeed parallel the corresponding parts of the
odd-type analysis. There are liabilities however. Two involutions in G generate
a dihedral subgroup of G. Two elements of order p in G probably generate G.
This undermines the counting arguments which had been exploited to great effect
by Brauer, Feit, Suzuki and Bender. In particular it seems impossible to give an
a priori proof of the odd analogue of Bender’s Strongly Embedded Theorem. (A
posteriori there is a Strongly p-Embedded Subgroup Theorem for all primes p not
dissimilar to Bender’s theorem for p = 2. In particular it asserts that if G is a
finite simple group of p-rank at least 3 having a strongly p-embedded subgroup,
then G is a split BN -pair of BN -rank 1 in characteristic p.) Inasmuch as one
fork of the Gorenstein-Walter Alternative which underlies Signalizer Functor Anal-
ysis is the existence of a strongly p-embedded subgroup, this is a serious liability.
However, in the context of their analysis of centralizers of semisimple elements in
simple groups of characteristic 2-type, Gorenstein and Lyons [GL1] were able to re-
fine the Gorenstein-Walter dichotomy to the following Trichotomy Theorem, which
completed Steps XI and XV of Gorenstein’s Program and formed the structural
capstone of the characteristic 2-type portion of the Classification:

Gorenstein-Lyons Trichotomy Theorem. Let G be a simple group of charac-
teristic 2-type with e(G) ≥ 4 in which all proper subgroups have known simple
composition factors. Then one of the following alternatives holds:

1. There is an odd prime p and an element x of G of order p such that CG(x)
has a normal quasisimple subgroup L with L/Z(L) a group of Lie type in
characteristic 2; or

2. G has a maximal 2-local subgroup M which is a p-uniqueness subgroup for
some odd prime p such that M has p-rank at least 4; or

3. G is of GF (2)-type.

Some clarification and explanation of the terminology in this theorem is in order.
First, conclusion (1) in fact contains quite a bit more information than is stated
above concerning centralizers of certain elements y of order p commuting with x.
Indeed there is enough information to construct a large subgroup G0 of G via the
Steinberg or Curtis-Tits relations for groups of Lie type and then to show that
G = G0 using refinements of Bender’s Strongly Embedded Theorem. This was
accomplished by Gilman and Griess [GG], completing Step XVI.

In case (2), often called the Uniqueness Case, M is roughly a strongly p-embedded
subgroup of G. The key extra fact is that M is a 2-local subgroup of G. Indeed it
may be shown that M contains a Sylow 2-subgroup of G. By the Global C(G, T )
Theorem there must be another 2-local subgroup N of G such that M ∩N contains
a Sylow 2-subgroup of G. This is the point of departure for the analysis of case (2).
The problem is still extremely difficult. Nevertheless it was solved by Aschbacher
[A8], completing Step X.

It remains to explain GF (2)-type. Although the only simple groups which satisfy
the hypotheses of the Trichotomy Theorem are finite groups of Lie type in char-
acteristic 2, there are certain near misses associated primarily with the sporadic
simple groups for which neither conclusion (1) nor conclusion (2) holds. Rather, a
variant of (1) holds in which L/Z(L) is a group of Lie type in characteristic p or a
sporadic simple group. This should be regarded as the natural extension of a case
first considered by Thompson in the N-Group Paper and later treated more gener-
ally by Klinger and Mason [KM], namely the case where G is both of characteristic
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2-type and of characteristic p-type for p an odd prime such that some 2-local has
p-rank at least 2. As such, this is Step XII of Gorenstein’s Program. An easy first
step of the analysis leads to the conclusion that for some 2-local subgroup H of G,
F ∗(H) is a 2-group of symplectic type in the sense of Philip Hall.

Definitions. 1. A 2-group T is of symplectic type if every characteristic abelian
subgroup of T is cyclic. It follows that T = E ◦R, where E is an extraspecial
2-group (or E = 1) and R is cyclic or of maximal class.

2. A group G is of GF (2)-type if for some involution t of G, F ∗(CG(t)) is a
2-group of symplectic type.

Sixteen of the sporadic simple groups are of GF (2)-type and indeed this feels
like the source of all sporadic groups. Thus it was a shock when Timmesfeld
[Tm2] announced in 1976 the local classification of all simple groups of GF (2)-
type, the global determination following soon thereafter by work of S. D. Smith
and others. We could hear the bell toll for the Classification. At the Duluth
Group Theory Conference in the summer of 1976 the energy which had driven
the classification endeavor turned into a frenzy akin to the Oklahoma land rush, as
researchers scrambled to lay claim to the few remaining problems. Foremost among
the unresolved problems were the cases e(G) = 2 and 3 (Steps XIII and XIV),
which lay between Aschbacher’s Thin Group Theorem and the Gorenstein-Lyons
Trichotomy. The former was claimed by G. Mason and the latter by Aschbacher.
The e(G) = 2 case had been dubbed the Quasithin Case by Janko.

Psychologically the Classification was over in 1976. As recently as 1974 in the
wake of the discoveries of J4, the Monster and its subgroups, Alperin had remarked
that the Classification seemed to be converging and diverging at equal rates. But
in a talk on October 30, 1976, Brauer reported [Br2]:

“It seems that most group theorists feel that it is only a matter of time until all
finite simple groups will be classified. Jonathan Alperin wrote to me recently: ‘It
is a good guess that within five years everything should be pretty clear. But how
long it will take to clean up and correct all the papers – and they do need that – is
anybody’s guess.’ ”

When long manuscripts were circulated a few years later by Aschbacher [A7],
Mason [Ms2], and Gilman and Griess [GG] treating all the outstanding problems, it
was natural for Gorenstein to declare the Classification Project completed in 1981,
even though many difficult and fundamental papers had yet to wend their way
through the refereeing and publication process. By the end of 1983 all of the relevant
papers had indeed been published, except for Mason’s quasithin manuscript, which
was to remain an almost-completed, never-published torso.

8. The long goodbye

The proceedings of the 1978 Research Symposium in Finite Simple Groups [Cl]
held in Durham, England, were published in 1980. The preface by Collins expresses
the basic perception reinforced by the text: “The dominant area of discussion was
the classification of simple groups, a programme which is now almost complete.”
Indeed there are essays by many of the major researchers summarizing the sta-
tus of the important subproblems. The classification of groups of component-type
(odd-type) is reported by Seitz and Solomon to be complete modulo two specific
characterization problems, solved soon thereafter by Aschbacher and Walter. All
other major theorems are covered in articles by Aschbacher, Gorenstein, Griess,



THE CLASSIFICATION OF THE FINITE SIMPLE GROUPS 341

Mason and Timmesfeld, with the exception of the e(G) = 3 problem, whose solu-
tion by Aschbacher is reported by Collins in his introductory survey article. When
the finite group theorists gathered in Santa Cruz, California, the following summer
(1979) for a long conference, it was perceived as a wrapping-up of the classification
project and a charting of new directions for the field. A (false) rumor circulated be-
fore the conference that Philip Hall, a notorious recluse, planned to attend, leading
Graham Higman to quip that it was likely since Philip Hall liked to attend funerals.

There remained a gap concerning the existence and uniqueness of some of the
sporadic simple groups, notably the Monster. However, in January 1980 Griess
startled everyone by announcing a computer-free construction of the Monster [Gr].
Over the previous decade Sims had developed powerful methods for the computer
construction of finite simple groups as permutation groups, achieving striking suc-
cesses beginning with the construction of the Lyons group as a permutation group
of degree almost 9 million and culminating in the construction (jointly with Leon)
of the Baby Monster as a permutation group of degree approximately 14 billion.
But the Monster was daunting even for Sims and his computer. Griess avoided this
problem by instead defining a non-associative commutative algebra of dimension
196884 having the Monster as its group of automorphisms. Investigations associated
with the Griess algebra and its associated vertex operator algebra have stimulated
some of the most fruitful research of the post-Classification era, including the Fields
Medal research of Borcherds. Uniqueness questions for some of the sporadic groups
such as the Monster remained open for quite a few years. Nevertheless it appeared
in 1980 that one could claim the following theorem:

The Classification Theorem. Let G be a finite simple group. Then G is either
(a) a cyclic group of prime order;
(b) an alternating group of degree n ≥ 5;
(c) a finite simple group of Lie type; or
(d) one of 26 sporadic finite simple groups: the five Mathieu groups, the four

Janko groups, the three Conway groups, the three Fischer groups, HS, Mc,
Suz, Ru, He, Ly, ON , HN , Th, BM and M .

(As uniqueness theorems trickled in, statement (d) became precisely accurate.
For example, Griess, Meierfrankenfeld and Segev established the uniqueness of the
Monster in [GMS].) In an unpublished draft of the preface to his Finite Simple
Groups: An Introduction to Their Classification [G4], Gorenstein asserts: “In Au-
gust, 1980, the classification of the finite simple groups was completed.” In the
published version, he amended this to February 1981. Gorenstein attributed the fi-
nal theorem to Norton, while Aschbacher attributed the final theorem to me. Both
were inaccurate. A gap remained to be filled. Around 1989 Aschbacher noticed that
Mason’s 800-page manuscript on quasithin groups was incomplete in various ways;
in particular it lacked a treatment of certain “small” cases. By 1992 Aschbacher
had prepared a manuscript treating the remaining cases and announced his result
at the Joint AMS/LMS meeting that year. However, both manuscripts remain
unpublished. Finally in 1996 Aschbacher and Smith took on the task of proving
and publishing a proof of the Quasithin Theorem. This has been no small task. It
is important to understand that in finite group theory, as in some other areas of
mathematics, bigger is in many ways easier. Signalizer functors are available when
the p-rank is at least 3, not when it is 1 or 2. Curtis-Tits presentations exist when
the BN -rank is at least 3, not when it is 1 or 2. In an inductive setting, groups
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whose proper subgroups have composition factors which are large (known) simple
groups are more manageable than groups whose proper subgroups have only abelian
or very small simple composition factors. Most large simple groups have a unique
“identity”. Many small simple groups have multiple personalities, for example:

A5
∼= SL(2, 4) ∼= PSL(2, 5) ∼= O(3, 5)′ ∼= O−(4, 2)′;

A6
∼= PSL(2, 9) ∼= M ′10

∼= O(3, 9)′ ∼= O−(4, 3) ∼= Sp(4, 2)′;

PSp(4, 3) ∼= O(5, 3)′ ∼= PSU(4, 2) ∼= O−(6, 2)′ ∼= W (E6)′.

Moreover the structures of outer automorphism groups and Schur multipliers are
uniformly described for all large simple groups, while numerous anomalies arise for
small simple groups. These facts and others are instrumental in the existence of
the sporadic simple groups, many of which are quasithin, and plague the analysis
of quasithin groups.

Nevertheless the Aschbacher-Smith manuscript is near completion (see http://
www.math.uic.edu/smiths/papers/quasithin/quasithin.dvi) and with its publica-
tion by the A.M.S. will come the true completion of the classification of the finite
simple groups.

9. Revisions

New approaches to old problems began early. Indeed Glauberman’s ZJ-Theorem
may be regarded as a revision of Thompson’s factorization theorems and was cer-
tainly used as such in Bender’s revised proof of the Feit-Thompson Uniqueness
Theorem. Also Dade [Da] improved the coherence map for the character theory
part of the Odd Order Paper.

The Uniqueness Theorem was the beginning of Bender’s role as the quintessential
revisionist. Shortly thereafter [Be2] he dramatically shortened the proof of Walter’s
theorem on groups with abelian Sylow 2-subgroups, introducing the generalized
Fitting subgroup and proving the following theorem.

Bender’s Maximal Subgroup Theorem. Let G be a finite simple group with
distinct maximal subgroups M and N such that F ∗(M) ≤ N and F ∗(N) ≤ M .
Then there exists a prime p such that both F ∗(M) and F ∗(N) are p-groups.

Indeed if G is a finite simple group of Lie type in characteristic p and M and N
are two maximal parabolic subgroups of G containing the same Sylow p-subgroup
of G, then M and N satisfy the hypotheses (and conclusion) of Bender’s theo-
rem. The theorem is particularly effective in passing from the case where F ∗(M)
is nilpotent to the characteristic p-type case. Bender’s methods were soon adopted
by Goldschmidt to help prove the 2-Signalizer Functor Theorem and to classify
groups with a strongly closed abelian 2-subgroup [Go4]. Bender himself applied his
methods to the revision of the Gorenstein-Walter theorem on groups with dihedral
Sylow 2-subgroups. This work was largely completed by 1972 but remained unpub-
lished for a decade, in part because of Bender’s reluctance to use modular character
theory. Finally Glauberman showed Bender how to replace the modular character
theory with ordinary character theory and the work was published [BG1],[Be4].

Meanwhile in the late 1970’s Glauberman and Bender had been thinking in-
dependently about further revision of the local analysis of the Odd Order Paper,
and Glauberman brought a completed manuscript to Santa Cruz in 1979. Bender,
however, had additional improvements and again final publication was delayed for
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a decade. Around the same time Sibley was finding further improvements of Feit’s
coherence results and prepared extensive notes for a revised treatment of the char-
acter theory portion of the Odd Order Theorem. Finally Peterfalvi found a slick
proof of the final generator and relations argument of the Odd Order Paper and,
using the earlier work of Dade and Sibley, obtained a revised proof [Pe2] of com-
plementary material to the Bender-Glauberman Local Analysis for the Odd Order
Theorem [BG2]. Peterfalvi also obtained a revised proof of Suzuki’s Theorem on 2-
transitive groups, as well as O’Nan’s characterization of PSU(3, q) for q odd [Pe1].
With Enguehard’s treatment [E] of the work of Thompson, Bombieri and others on
the Ree groups, this constituted a complete treatment of the foundational work on
groups of odd order and split BN-pairs of rank 1.

Struck by the elegance of the Bender-Glauberman work on groups with dihedral
Sylow 2-subgroups, I began in 1981 to investigate the possibility of extending their
methods to treat groups with semidihedral Sylow 2-subgroups. At about the same
time, Gorenstein and Lyons initiated a major project to prepare a complete unified
proof of the Classification Theorem modulo the foundational theorems mentioned in
the previous paragraph and modulo the existence, uniqueness and basic properties
of the sporadic simple groups. In 1982 I joined their team (GLS) and extended
the scope of my particular focus to cover the so-called Small Odd Case. Meanwhile
Gorenstein and Lyons focussed their primary attention on extending the work in
their Memoirs volume (on groups of characteristic 2-type with e(G) ≥ 4) to cover
so-called Generic Groups, both of odd-type and of even-type.

A few words are in order concerning the odd-type/even-type dichotomy. One
of the fundamental consequences of Thompson’s work was to shift attention from
the top of a group (the domain of the transfer map) to the bottom. It is useful to
think of the major intermediate results of the Classification not as theorems about
simple groups but rather as local criteria for the triviality or simplicity of certain
characteristic subgroups of an arbitrary finite group G, just like Cartan’s Criterion
for the triviality of the solvable radical of a Lie algebra. Thompson’s ideas provided
powerful new tools for proving such criteria for characteristic subgroups of F (G)
(later F ∗(G)). Thus the B-Theorem and its analogues establish from local data the
fact that F (G) = 1, so that F ∗(G) = E(G) is a direct product of nonabelian simple
groups. Next Aschbacher’s Component Theorem and its analogues establish from
local data that in fact F ∗(G) is a single nonabelian simple group. However, none
of these theorems enables one to detect that G = F ∗(G), i.e. to detect locally that
Aut(E) is not a simple group, where E is a nonabelian simple group. Of course
this is precisely where transfer theorems come into play (in view of the Schreier
Conjecture), but it is perhaps better to think of the Classification Theorem as a
classification of finite groups G such that F ∗(G) is a nonabelian simple group. From
this point-of-view, the groups of characteristic 2-type should be those finite groups
G such that F ∗(G) is a nonabelian simple group of Lie type in characteristic 2.
But now the internal criterion that F ∗(H) = O2(H) for every 2-local subgroup H
of G is no longer the appropriate one. For if t is an involution in G inducing a
graph, field or graph-field automorphism on F ∗(G) and H = CG(t), then usually
E(H) 6= 1. Instead E(H) is again a simple group of Lie type in characteristic 2.
The notion of even-type is a weakening of the notion of characteristic 2-type in such
a way that almost all finite groups G in which F ∗(G) is a simple group of Lie type
in characteristic 2 are groups of even type. An interesting and not unattractive
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consequence of this is that most of the sporadic simple groups are groups of even-
type, although only a few are groups of characteristic 2-type. There is a broad
consensus on the desirability of replacing characteristic 2-type with some version of
even-type as described here. There is much less agreement on the ideal definition
of even-type. One version is given in [GLS1]. A different version (called “even
characteristic” to avoid confusion) is given by Aschbacher and Smith. Yet another
version has been proposed by Meierfrankenfeld.

Groups of characteristic 2-type have their analogues in groups of characteristic
p-type for all primes p. And just as for 2, this notion can be weakened to a notion
of p-type which captures almost all finite groups G for which F ∗(G) is a simple
group of Lie type in characteristic p. Again many sporadic simple groups are of
p-type for at least one odd prime p. Indeed the property of G being both of 2-type
(even type) and p-type for some odd prime p such that the 2-local p-rank of G is
at least 2 is practically a defining property of the sporadic simple groups. The first
theorem in this vein was proved by Thompson as part of his N -Group Paper. This
was generalized in a paper of Klinger and Mason. An unpublished manuscript of
Gorenstein and Lyons [GL2] characterizes five of the sporadic simple groups (Co1,
Fi23, Fi′24, BM and M) in this spirit.

In the late 1970’s Goldschmidt began to rethink the pushing-up theorems of
Baumann, Glauberman and Niles. He was inspired by earlier work of Sims, who
had used a graph-theoretic result of Tutte to prove a pushing-up result for groups M
with M/O2(M) ∼= S3. Goldschmidt’s analysis evolved into a strategy for studying
groups G generated by a pair of subgroups (L1, L2) such that

1. L1 ∩ L2 contains a common Sylow 2-subgroup of both L1 and L2, and
2. G has no nontrivial normal 2-subgroup.

Instead of studying a finite group G with these properties, Goldschmidt consid-
ered the free product of L1 and L2 amalgamated over the subgroup L1 ∩L2 acting
on its associated tree. This provided a supple new language for Thompson’s weak
closure analysis. Stroth and Stellmacher soon followed in Goldschmidt’s footsteps,
and his strategy was refined and dubbed the Amalgam Method. Goldschmidt’s
initial motivation was to provide a new approach to results like Thompson’s N -
Group Theorem and Aschbacher’s Thin Group Theorem, and indeed these two
goals were accomplished by Stellmacher [Sl2],[Sl3]. A central accomplishment was
the classification of weak BN -pairs of rank two by Delgado and Stellmacher [DGS],
substantially extending Goldschmidt’s original work on automorphism groups of
trivalent graphs [Go5]. One typical feature of these theorems is that it leads to the
identification up to isomorphism of the amalgam (L1, L2;L1∩L2), not the possible
faithful finite completions of the amalgam. Indeed the classification of all faithful
finite completions is often infeasible. However, if the finite group G is assumed to
be of characteristic 2-type and if L1∩L2 is assumed to contain a Sylow 2-subgroup
S of G, then it is easy to see (by the Brauer-Fowler Theorem) that |G| is bounded
by |S| and so the problem becomes finite and indeed manageable. In fact a program
of characterizations of this type was initiated by Suzuki in the 1960’s. Indeed an
attack on the Quasithin Theorem by somewhat similar methods was begun in the
1970’s by Gomi, later joined by Hayashi and others. Stellmacher also studied the
Quasithin Problem via the Amalgam Method, but in the course of the 1990’s his
focus shifted to the general theory of groups of characteristic p-type. Joined first by
his student, Meierfrankenfeld, and later by Stroth, Chermak, Parmeggiani, Parker
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and Rowley, yet another major revision project (MCP 2RS2) took shape, more or
less orthogonal to the GLS project.

The goal of the GLS project is to classify finite simple groups G for which there
exists a prime p such that G has p-rank at least 3 and G is NOT of p-type, choosing
p = 2 if possible. In addition we also plan to classify simple groups of 2-rank 2, as
well as simple groups which are both of even type and of p-type for some odd prime
p such that G has 2-local p-rank at least 3. When these conditions fail, either G
has odd order or G is of quasithin even type. In either case we (will) have other
theorems to invoke (Feit-Thompson and Aschbacher-Smith).

On the other hand the goal of the MCP 2RS2 project is to classify finite simple
groups G which are of characteristic p-type for some prime p and which are gener-
ated by the p-local overgroups of some fixed Sylow p-subgroup of G. For a suitably
weakened interpretation of the term characteristic p-type, this should cover all fi-
nite simple groups except for the alternating groups, J1, and the split BN -pairs of
rank 1. The MCP 2RS2 team does not at present have an independent strategy
for identifying these groups. Nevertheless their approach might yield a more effi-
cient treatment of groups of even type than that of the GLS and Aschbacher-Smith
teams.

A rough count by Gorenstein showed that the original proof of the Classification
Theorem occupies about 15,000 journal pages. By incorporating new ideas, efficien-
cies of organization and the systematic use of the hypothesis that G is a minimal
counterexample to the Classification, the GLS proof with its numerous supporting
results should occupy about 5,000 printed pages, a substantial reduction but still a
daunting length. Although new ideas within the same conceptual framework might
well prune hundreds of pages from the proof, it is difficult to imagine an order-
of-magnitude reduction in the length of the proof without abandoning the entire
approach and perhaps moving beyond the category of finite groups.

Is there a completely new and revolutionary approach to the Classification wait-
ing to be discovered? In Thompson’s eloquent article “Finite Non-Solvable Groups”
written around 1982 [T4], he says:

“... the classification of finite simple groups is an exercise in taxonomy. This is
obvious to the expert and to the uninitiated alike. To be sure, the exercise is of
colossal length, but length is a concomitant of taxonomy. Those of us who have been
engaged in this work are the intellectual confreres of Linnaeus. Not surprisingly, I
wonder if a future Darwin will conceptualize and unify our hard won theorems. The
great sticking point, though there are several, concerns the sporadic groups. I find it
aesthetically repugnant to accept that these groups are mere anomalies...Possibly...
The Origin of Groups remains to be written, along lines foreign to those of Linnean
outlook.”

I doubt that any developments of the past two decades would change Thompson’s
summary of the state of the field. We are still waiting and wondering. Are the finite
simple groups, like the prime numbers, jewels strung on an as-yet invisible thread?
And will this thread lead us out of the current labyrinthine proof to a radically new
proof of the Classification Theorem?

10. Applications and other developments

What next? It is easier to recount the past than to predict the future. In the
immediate aftermath of the announcement of the Classification there was intense
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activity culling the more immediate consequences of the theorem by verifying old
conjectures in the theory of groups, geometries and elsewhere. Venerable conjec-
tures such as Schreier’s Conjecture and Frobenius’ Conjecture were confirmed fairly
quickly. Likewise the classification of k-transitive permutation groups (k ≥ 2) was
completed along with several other classifications of classes of permutation groups
or geometric groups. These results in turn made possible the determination of the
Galois groups of numerous classes of polynomial equations. In contrast to these
taxonomic theorems, Borovik, Cherlin and others have used some of the funda-
mental methods of the Classification proof in their investigation of infinite simple
groups of finite Morley rank.

Perhaps the most dramatic corollary of the Classification is the affirmative solu-
tion of the Restricted Burnside Problem. The Hall-Higman paper [HH] had reduced
the Restricted Burnside Problem to the prime-power exponent case, which was set-
tled by Zelmanov, together with certain assertions about finite simple groups which
are easy corollaries of the Classification. The theorem has also influenced thinking
about the Inverse Galois Problem, though this remains open and indeed seems far
from being reduced to the case of finite simple groups.

The field of ordinary and modular representations of finite groups (not to mention
integral representations) remains full of difficult problems and intriguing conjectures
(by Brauer, Donovan, Alperin, Dade, Broué, Puig and others) in spite of both the
Classification and the major achievements of Lusztig and others on the representa-
tion theory of finite groups of Lie type. A plethora of new ideas and approaches has
emerged involving the theory of algebras, derived categories, subgroup complexes,
algebraic geometry and algebraic groups, infinite-dimensional representations and
more.

The classification of primitive permutation representations (equivalently, maxi-
mal subgroups) of the finite simple groups was launched as a program at the Santa
Cruz Conference by L. Scott, who co-contributed the O’Nan-Scott Theorem on
maximal subgroups of Sn, later supplemented by Aschbacher’s Theorem on max-
imal subgroups of classical linear groups. Some of the most difficult questions
have stimulated deep investigations of the interaction between finite and algebraic
groups by Seitz, Testerman, Liebeck and others, yielding major dividends for al-
gebraic group theory and representation theory as well and continuing to generate
new questions, for example, concerning tilting modules.

The flag-transitive action of groups on geometries, extending Tits’ theory of
buildings, was initiated by Buekenhout and pursued energetically by many re-
searchers, including Aschbacher, Timmesfeld, Ronan, Smith, Stroth, Ivanov and
Shpectorov. This has led to new characterization theorems for many of the spo-
radic groups, as well as the groups of Lie type, motivating the proposed endgame for
the MCP2RS2 program. In related work, Tits and Weiss have classified Moufang
generalized n-gons, and numerous applications to graph theory have been obtained
by Praeger, Saxl and many others. A still elusive will-o’-the wisp is an elegant set
of axioms, in the spirit of Tits’ axioms for a building, defining a class of geometries
for all of the finite simple groups and perhaps more, but not too much more.

Monsterology has become its own subfield, spawning the mathematical inves-
tigation of vertex operator algebras by Lepowsky, Borcherds, Miyamoto, Griess,
Mason and others. Again questions abound, ranging from a foundational search for
the “correct” definition of a VOA to the search for a truly satisfying explanation
of Monstrous Moonshine. In addition to Moonshine, numerous Monster-related
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mysteries have been observed by McKay, Glauberman, Norton, Lyons and others,
including many strange parallels with the exceptional groups of Lie type. Pushing
through the envelope of finite groups, Conway has constructed a groupoid M13

containing both M12 and PSL(3, 3), while Dwyer and Wilkerson have constructed
an H-space, DI(4) related to Spin(7) and the Conway group Co3. The octonions
and the exceptional simple Jordan algebra have well-established connections to the
exceptional Lie groups, but also to the Leech lattice. I believe there is much gold
still to be mined in this vein.

An ever-improving arsenal of computer algorithms for the identification of per-
mutation groups, linear groups and more generally “black box” groups is being
assembled by Kantor, Seress and many other researchers. In particular there is
hope of determining all finite groups of order at most 2001 in the year 2001. On
the other hand, calculation of groups of order 210 has reconfirmed the long-known
fact that “most” finite groups are nilpotent groups of nilpotence class at most 2
and they exist in frightening numbers.

Thus the classification of all finite groups is completely infeasible. Nevertheless
experience shows that most of the finite groups which occur “in nature”—in the
broad sense not simply of chemistry and physics, but of number theory, topology,
combinatorics, etc.—are “close” either to simple groups or to groups such as dihe-
dral groups, Heisenberg groups, etc., which arise naturally in the study of simple
groups. And so both the methodologies and the database of information gener-
ated in the course of the Classification Project remain of vital importance to the
resolution of questions arising in other disciplines.

Is the database correct? Is there a 27th sporadic simple group? I seriously doubt
it, but it would be chutzpahdich to assert that a 5000-page 40-year human endeavor
is beyond the possibility of human error. It is heartening that the Revisionists have
scrutinized and rethought the delicate and difficult work on groups of odd order
and split BN -pairs of rank 1. The Aschbacher-Smith and MCP 2RS2 projects give
promise of providing two independent proofs of the Quasithin Theorem. The GLS
team is carefully reworking the rest, and we are most grateful that Thompson,
Ho and Sin have been studying our manuscripts. For almost two decades in the
60’s and 70’s, keen-eyed seekers scoured the terrain searching for new sporadic
treasures. All of this bolsters our confidence. But finally we await the visionaries of
new generations, the Darwins of Thompson’s metaphor, who will shed unexpected
new light on this ever-fascinating subject. Hilbert dreamed of returning in 100
years to ask about the Riemann Hypothesis. I would like to return in 100 years
and ask: “What do the sporadic simple groups really mean?” As Hilbert would
say: We must know! We will know!

11. Personal remarks and acknowledgements

In the summer of 1970 I participated in an exhilarating NSF-funded Summer
Institute on Finite Groups at Bowdoin College. During that summer and the years
immediately following it, I had the rare privilege to work with and befriend some of
the best mathematicians and finest human beings anyone could ever hope to meet,
including but not limited to: Walter Feit, David Goldschmidt, Richard Lyons,
Leonard Scott, Danny Gorenstein, Koichiro Harada, Jon Alperin, George Glauber-
man and Paul Fong. I owe them all, and of course John Thompson, Helmut Bender
and Michael Aschbacher, a debt which I could never begin to repay. It has been
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the gift of these teachers that I have been able to appreciate the beauty of their
ideas. Even more it has been a privilege to know them as friends and share my life
with them. The group theory community has been a blessed place to work, and I
can only acknowledge with deepest gratitude the nobility of spirit of all those great
mathematicians who have made it that way.

With specific regard to this article, my understanding of the history of group
theory has benefitted greatly from my acquaintance with Peter Neumann, and the
discussion of the period 1890–1910 in this article relies heavily on a survey article of
his to appear in the forthcoming Collected Works of William Burnside. Thompson’s
article [T4] is a fascinating document and is quoted extensively above. My view
of the history of the Classification is of course indelibly colored by Gorenstein’s
numerous surveys and personal recollections such as [G6]. My understanding of
Suzuki’s place in the saga has grown considerably thanks to conversations with
Harada and a fascinating article of his to appear shortly [Hr2]. I thank Steve
Smith and Inna Korchagina for their careful scrutiny of this article, as well as
Aschbacher and Harada for their comments. G.E. Wall, Huppert and Alperin also
deserve thanks for their private communications. And always a special wink and a
smile for Richard Lyons.
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